Oxford Desk Reference
Toxicology

Edited by

Professor D Nicholas Bateman
Formerly Professor of Clinical Toxology and Consultant Physician
Royal Infirmary of Edinburgh and Formerly Director
National Poisons Information Service (Edinburgh Unit)
Edinburgh, UK

Dr Robert D Jefferson
Consultant Occupational Physician
Health Management Ltd, UK

Professor Simon HL Thomas
Consultant Physician and Professor of Clinical Pharmacology and Therapeutics
Newcastle Hospitals NHS Foundation Trust and Newcastle University
Medical Toxicology Centre and Director
National Poisons Information Service (Newcastle Unit)
Newcastle upon Tyne, UK

Dr John P Thompson
Senior Lecturer in Clinical Pharmacology
Institute of Molecular and Experimental Medicine, Cardiff University
and Director National Poisons Information Service
(Cardiff Unit), Cardiff, UK

Professor J Allister Vale
Director
National Poisons Information Service (Birmingham Unit) and
West Midlands Poisons Unit
City Hospital, Birmingham and School of Biosciences
University of Birmingham, Birmingham, UK

OXFORD UNIVERSITY PRESS
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed Contents</td>
<td>xi</td>
</tr>
<tr>
<td>List of Contributors</td>
<td>xv</td>
</tr>
<tr>
<td>Symbols and Abbreviations</td>
<td>xvii</td>
</tr>
<tr>
<td>1 Scientific principles in clinical toxicology</td>
<td>1</td>
</tr>
<tr>
<td>2 General management of the poisoned patient</td>
<td>31</td>
</tr>
<tr>
<td>3 Common complications of poisoning</td>
<td>63</td>
</tr>
<tr>
<td>4 CNS drugs</td>
<td>95</td>
</tr>
<tr>
<td>5 Analgesics</td>
<td>115</td>
</tr>
<tr>
<td>6 Cardiovascular acting agents</td>
<td>131</td>
</tr>
<tr>
<td>7 Other common pharmaceutical toxins</td>
<td>149</td>
</tr>
<tr>
<td>8 Drugs of abuse</td>
<td>179</td>
</tr>
<tr>
<td>9 Common chemical poisonings</td>
<td>205</td>
</tr>
<tr>
<td>10 Poisoning due to metals, and their salts</td>
<td>265</td>
</tr>
<tr>
<td>11 Household products</td>
<td>289</td>
</tr>
<tr>
<td>12 Pesticides, herbicides, and rodenticides</td>
<td>297</td>
</tr>
<tr>
<td>13 Poisoning due to fungi, plants, and animals</td>
<td>315</td>
</tr>
<tr>
<td>14 Chemical warfare agents</td>
<td>335</td>
</tr>
<tr>
<td>15 Principles of radiation toxicology</td>
<td>357</td>
</tr>
<tr>
<td>16 Occupational and industrial aspects of toxicology assessment</td>
<td>381</td>
</tr>
</tbody>
</table>

Index 393
Chloroquine 162
Colchicine 164
Iron poisoning 166
Methotrexate and other chemotherapeutic agents 168
Quinine 172
Thyroxine and triiodothyronine 174
Vitamins 176

8 Drugs of abuse 179
Introduction to problems in the drug user 180
Amphetamines and related compounds 182
Cannabis and khat 184
Cocaine 186
Gamma-hydroxybutyrate and related compounds 188
Ketamine and related compounds 190
Psychedelic agents 192
Opioids 194
Solvents 196
Volatile nitrites 198
Drugs of abuse in sport 200
Body packers and smugglers 202

9 Common chemical poisonings 205
Acetone and isopropanol 206
Acids and alkalis 208
Ammonia 212
Benzene and toluene 214
Bromates and chlorates 216
Carbon disulphide 218
Carbon monoxide 219
Chlorinated hydrocarbons 221
Chlorine 225
Complex glycols (glycol ethers) 227
Cyanide 229
Dioxins and polychlorinated biphenyls 232
Essential oils 234
Ethanol and methanol 236
Ethylene dibromide 239
Ethylene and diethylene glycols 240
Fluoroacetate (sodium fluoroacetate) 242
Formaldehyde and methylhyde 245
Hydrofluoric acid 247
Hydrogen sulphide 249
Hydrocarbons 250
Isocyanates 252
Naphthalene and paradichlorobenzene 254
Nitrogen and nitrogen oxides, and smoke inhalation 255
Phenol and related compounds 257
Phosgene 260
Strychnine 261
Sulphur dioxide 262
Xylenes 264

10 Poisoning due to metals, and their salts 265
Antimony 266
Arsenic and arsine 267
Cadmium 271
Chromium 272
Copper salts 274
Fluoride (sodium fluoride) 275
Lead 276
Manganese 278
Mercury and mercury salts 279
Metal fume fever 283
Phosphorus 284
Thallium 286

11 Household products 289
Detergents 290
Antiseptics and disinfectants 292
Non-toxic household products 294

12 Pesticides, herbicides, and rodenticides 297
Organophosphorus insecticides 298
Carbamates 301
Other insecticides: pyrethroids, nicotine, and neonicotinoids 303
Chlorophenoxyl herbicides 305
Parquat and diquat 307
Glyphosate 309
Coumarin rodenticides 311
Aluminium phosphide and phosphine 313

13 Poisoning due to fungi, plants, and animals 315
Poisonous fungi 316
Common plant poisonings 320
Venomous animals—spiders and scorpions 324
Marine envenoming 328
Common venomous snakes 332
Fluoroacetate (sodium fluoroacetate)

Background
Sodium fluoroacetate was selected by screening more than a thousand compounds for rodenticidal action during World War II and introduced into use in the USA in 1944. It was, and still is, referred to as 1080, the laboratory reference number it was given during its assessment. Fluoroacetic acid was isolated in 1944 from Dichocarpus cymosus, a South African plant known to be poisonous to farm animals.

Toxicokinetics
Fluoroacetate is absorbed rapidly from the gastrointestinal tract and is widely distributed to tissues. Fluoroacetate is then hydrolysed rapidly, fluorooacetyl CoA formed, a toxicologically significant quantity of fluorooacetate is synthesized and key intracellular processes are disrupted. Some fluorooacetate is excreted unchanged in the urine.

Mechanisms of toxicity
The toxicity of fluorooacetate stems from its similarity to acetate, which has a pivotal role in cellular metabolism. Fluoroacetate combines with coenzyme A to form fluorooacetyl CoA, which can substitute for acetyl CoA in the tricarboxylic acid cycle where it reacts with citrate synthase to produce fluorooacetate (Figure 9.5). A metabolite of one of the four possible stereoisomers of 2-fluoroacetate inhibits aconitate, thereby halting further progression of the cycle. As a consequence, energy production is reduced and intermediates of the tricarboxylic acid cycle subsequent to the citrate cycle are depleted.

Among these is oxoglutarate, a precursor of glutamate which is not only an excitatory neurotransmitter in the central nervous system but is also required for efficient removal of ammonia via the urea cycle. Increased ammonia concentrations have been observed in experimental fluorooacetate poisoning and may contribute to the incidence of seizures. Glutamate is also required for glutamine synthesis and glutamine depletion has been observed in the brains of fluorooacetate-poisoned rodents. Reduced cellular oxidative metabolism contributes to a lactic acidosis. Inability to oxidise fatty acids via the tricarboxylic acid cycle leads to ketone body accumulation and worsening acidosis while lowered ATP concentrations inhibit high energy-consuming reactions such as gluconeogenesis.

Fluoroacetate poisoning is associated with citrate accumulation in several tissues, including the brain. This is partly due to aconitate inhibition, for which citrate is the normal substrate. However, fluorooacetate also inactivates the mitochondrial membrane citrate carrier and increases cellular citrate concentrations thereby disrupting several enzyme systems including phosphofructokinase, the key regulatory enzyme of glycolysis. This in turn blocks glucose utilization leading to hyperglycaemia in experimental fluorescent poisoning. Hypoglycaemia may also ensue as a consequence of glycogen depletion. Poor glycemic control does not appear, however, to be a significant problem in fluorooacetate poisoning in man.

Citrate and fluorooacetate are known calcium chelators. Hypocalcaemia is therefore to be expected in fluorooacetate poisoning and both animal and clinical data support hypocalcaemia as a mechanism of fluorooacetate toxicity. It is possible that fluorooacetate-induced seizures are due, at least in part, to calcium being complexed in the spinal cord.

Clinical features
Sodium fluoroacetate poisoning is most common after ingestion. However, systemic toxicity may also occur after inhalation and eye exposure. It is poorly absorbed through intact skin, but may be absorbed through breaks in the skin. Skin and eye exposure may also produce local effects.

Nausea, vomiting and abdominal pain are common within 1 hour of ingestion. Sweating, apprehension, confusion, and agitation soon follow. Both tachycardia and bradycardia have been described. More serious arrhythmias, including supraventricular tachycardia, atrial fibrillation, ventricular tachycardia, ventricular fibrillation, and asystole, have been reported. Non-specific ST and T-wave changes are common, the QT may be prolonged and hypotension may develop.

Seizures are the main neurological feature and may recur, occasionally over a period of days. Consciousness becomes progressively impaired within a few hours of poisoning leading to coma that may persist for several days. Cerebellar dysfunction has been observed.

Serum calcium concentrations have been measured in relatively few cases of human poisoning. In one study, the initial mean total serum calcium concentrations did not differ significantly between seven fatalities and 31 survivors of poisoning. However, later in the course of their hospital stay, 57% of those who died were hypocalcaemic compared with only 36% of survivors (p < 0.01).

Less common features of fluorooacetate poisoning include nystagmus, chewing movements of the jaws, carpopedal spasms, reversible oliguric or non-oliguric renal failure in the absence of hypotension, metabolic acidosis, and increased transaminase activity.

Long-term sequelae have been reported. Cerebellar ataxia lasting for at least 18 months was reported in one patient; memory disturbances and depressive behaviour which resolved were also seen in this patient. Tetraplegia, cogwheel rigidity, grand mal epilepsy, cortical blindness, and divergent strabismus were seen in another patient 9 years after exposure; these features were attributed to cerebral hypoxia at the time of ingestion.

Hypotension, acidemia, and raised serum creatinine concentrations have been identified as the most sensitive predictors of a fatal outcome, though ventricular arrhythmias, refractory hypotension and secondary lung infections are the main causes of death.

The lethal dose for humans is estimated to be 2-10 mg/kg.

Management
If the patient presents within 1 hour of ingestion of a potentially toxic amount of fluorooacetate, gastric lavage may be performed, or activated charcoal may be given as it binds fluorooacetate, though there is no evidence that lavage or charcoal alters the clinical course.

- The plasma/blood glucose concentration should be measured urgently and hypoglycaemia corrected if found with 10% dextrose.
- If severe hypotension supervenes, rapid administration of intravenous saline 0.9% and a vasopressor such as
norepinephrine 40 micrograms [base]/mL by intravenous infusion at an initial rate of 0.16–0.33 mL/minute, for children 1 month–18 years give an intravenous infusion at a rate of 20–100 nanograms [base]/kg/minute; max 1 microgram [base]/kg/minute, adjusted according to response, may be necessary.

- Control of convulsions using an intravenous benzodiazepine is clearly vital, as is the establishment and maintenance of a clear airway and adequate ventilation. Give intravenous diazepam 10 mg (child 300–400 micrograms/kg) or lorazepam 4 mg (child 100 micrograms/kg). If repeated convulsions occur, phenytoin 20 mg/kg (max. 2 g) by slow intravenous injection or infusion (with blood pressure and ECG monitoring), at a rate not exceeding 1 mg/kg/minute (max. 50 mg per minute); for a child 1 month–12 years, 20 mg/kg at a rate not exceeding 1 mg/kg/minute (max. 50 mg per minute) as a loading dose.

Metabolic acidosis that is not secondary to hypoxia during seizures requires correction with intravenous sodium bicarbonate. Arrhythmias other than ventricular fibrillation should only be treated if causing peripheral circulatory failure. Renal failure should be managed conventionally.

Though the importance of calcium concentrations in fluorocacetate poisoning is uncertain, the serum calcium should be measured in any patient with severe poisoning and hypocalcaemia should be corrected if it is found.

A number of substances, including ethanol (which inhibits fluorocitrate production), acetate (which is thought to supplement the tricarboxylic acid cycle and to enter cells readily and compete with fluorocacetate for binding to acetyl CoA) and sodium succinate (which is thought to supplement the tricarboxylic acid cycle), alone and in combination, have been assessed experimentally but none has yet been employed in man.

Further reading

