
RESEARCH ARTICLE

Elucidating biogeographical patterns in

Australian native canids using genome wide

SNPs

Kylie M. Cairns1¤a*, Laura M. Shannon2¤b, Janice Koler-Matznick3, J. William O. Ballard1,

Adam R. Boyko2

1 School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South

Wales, Australia, 2 Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States

of America, 3 The New Guinea Singing Dog Conservation Society, Central Point, Oregon, United States of

America

¤a Current address: Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences,

University of New South Wales, Sydney, New South Wales, Australia

¤b Current address: Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota,

United States of America

* kylie@kyliecairns.com, k.cairns@unsw.edu.au

Abstract

Dingoes play a strong role in Australia’s ecological framework as the apex predator but are

under threat from hybridization and agricultural control programs. Government legislation

lists the conservation of the dingo as an important aim, yet little is known about the biogeog-

raphy of this enigmatic canine, making conservation difficult. Mitochondrial and Y chromo-

some DNA studies show evidence of population structure within the dingo. Here, we present

the data from Illumina HD canine chip genotyping for 23 dingoes from five regional popula-

tions, and five New Guinea Singing Dogs to further explore patterns of biogeography using

genome-wide data. Whole genome single nucleotide polymorphism (SNP) data supported

the presence of three distinct dingo populations (or ESUs) subject to geographical subdivi-

sion: southeastern (SE), Fraser Island (FI) and northwestern (NW). These ESUs should be

managed discretely. The FI dingoes are a known reservoir of pure, genetically distinct din-

goes. Elevated inbreeding coefficients identified here suggest this population may be genet-

ically compromised and in need of rescue; current lethal management strategies that do not

consider genetic information should be suspended until further data can be gathered. D sta-

tistics identify evidence of historical admixture or ancestry sharing between southeastern

dingoes and South East Asian village dogs. Conservation efforts on mainland Australia

should focus on the SE dingo population that is under pressure from domestic dog hybrid-

ization and high levels of lethal control. Further data concerning the genetic health, demo-

graphics and prevalence of hybridization in the SE and FI dingo populations is urgently

needed to develop evidence based conservation and management strategies.
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Introduction

Dingoes are controversial in Australia; like many other top-order carnivores, dingoes pose a

risk to livestock and are thus extensively managed in the livestock grazing regions of southeast-

ern Australia [1]. There is also extensive debate concerning the taxonomy and definition of

dingoes [2, 3]. However, dingoes are considered a native species, protected in national parks

[4–7] and are listed as vulnerable on the IUCN Red List [8]. Conservation and management

programs, adequately informed by scientific knowledge, must be developed to protect the

identity of the dingo before it is lost.

As the mainland top-level predator, dingoes play a strong role in shaping the ecosystems of

Australia [7, 9–11]. They have been observed to exert top-down control on large herbivores

such as kangaroos, wallabies and emu [12–17] and may play a role in indirectly protecting

native small-medium body weight marsupials [18–20]. In some cases, they may also reduce the

impact of introduced feral mesopredator pests such as foxes and cats through suppression,

exclusion and direct predation [17, 21–26].

In many parts of Australia dingoes are subject to lethal control in an effort to mitigate risks

to agricultural activities [7, 27, 28]. However, lethal control and management practices may

not always decrease dingo population size and pack destabilization may result in increased lev-

els of hybridization [16, 29]. Similarly, collapse of dingo social structures may increase live-

stock predation risk [16, 30]. Dingoes are widespread across the Australian mainland,

although rare in some areas due to high level of lethal control (Fig 1) [7]. Genetic evidence has

Fig 1. Distribution of dingoes across Australia. Map adapted from data in Fleming et al. [7] and Fleming et al. [36]. The bold black line indicates the position of

the dingo fence; dingoes south of the dingo fence are particularly subject to high levels of lethal control and may have a higher prevalence of hybridization. Broad

geographic sampling regions are noted on the map: the Kimberley, the Gibson Desert, the Simpson Desert, Fraser Island and the Australian Alpine region.

https://doi.org/10.1371/journal.pone.0198754.g001
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raised concern that dingoes are at risk of genetic dilution through hybridization with Euro-

pean domestic dogs [31–35]. Ultimately, management decisions regarding dingoes made with-

out data regarding the genetic identity and health of a population may have widespread

ecological implications.

Knowledge concerning the genetic health of natural populations, particularly isolated or

threatened populations, is important for the development of effective conservation and man-

agement programs. Severe inbreeding is a particular risk to conservation efforts because it may

lead to inbreeding depression, leaving a population more vulnerable to environmental or

demographic fluctuations, and possibly resulting in extinction [37–43]. Genetic rescue may be

used to improve the fitness of threatened species or populations [44]. Inbreeding is of particu-

lar concern for the Fraser Island dingo population given their low effective population size,

conservation significance and the lethal management strategies employed [32, 45–47].

Current genetic phylogenies based upon mitochondrial, Y chromosome and whole genome

single nucleotide polymorphism (SNP) data suggest that dogs, wolves and dingoes form a

monophyletic group [48–54]. Dogs likely diverged from wolves 16,000–30,000 years before

present (BP) [51, 55–61]. Dingoes diverged from other dogs approximately 5,000–10,000 years

BP [50, 52, 53, 62] and arrived in Australia at least 5,000 years BP [63–66]. Genetic compari-

sons between dingoes and other canids suggest that dingoes have an affinity with Asian wolves

and dogs, hinting that their heritage is most likely Asian [54]. It is hypothesized that dingoes

migrated into Australia through South East Asia [48, 50, 52, 62, 67].

Previous genetic studies have focused largely upon uniparental haplotypes, using mitochon-

drial and Y chromosome markers. Mitochondrial control region studies asserted that modern

dingo populations were likely the result of a single very homogeneous founder population,

possibly even a single pregnant female [53]. However, Sacks et al. [52], Ardalan et al. [48] and

Cairns et al. [67] detected the presence of two divergent paternal genetic lineages within din-

goes. Further, Cairns and Wilton [62] observed the presence of two geographically subdivided

populations of dingo using mitochondrial markers and a small number of autosomal loci.

However, uniparental markers may be maternally or paternally biased and show different evo-

lutionary patterns to autosomal markers [68–72]. Here we focus on patterns of genetic diver-

sity in 23 dingoes sampled from five geographical populations across Australia and using

nearly 60,000 SNPs to improve our understanding of population structure and genetic diver-

sity in this unique canid. Specifically, we aim to describe patterns of genetic subdivision in din-

goes using SNP data. We also investigate patterns of ancestral sharing with domestic dogs to

develop hypotheses concerning the origins and modern history of dingoes, particularly about

the prevalence of hybridization with European dogs. Inbreeding data are also interrogated to

inform hypotheses concerning the genetic health of dingo populations on the Australian main-

land and on Fraser Island. We discuss the implications of this data for the ongoing manage-

ment and conservation of dingoes.

Materials and methods

All applicable international, national, and/or institutional guidelines for the care and use of

animals were followed. This research was approved by the Animal Care and Ethics Committee

of the University of NSW (Permit Number: 12/36B).

Canid sampling

To investigate patterns of biogeography, we sampled 25 wild dingoes from five geographical

regions: The Kimberley (Western Australia), The Gibson Desert (Western Australia), The

Simpson Desert (Northern Territory), Fraser Island (Queensland) and the Australian Alpine
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region (Australian Capital Territory, Victoria and New South Wales) (S1 Table; Fig 1). Din-

goes were sampled from these five geographical regions to capture genetic variation across the

continent; these are the same regions sampled by Cairns and Wilton [62] and Cairns et al.

[67]. DNA was extracted from blood or tissue samples using the Qiagen DNeasy Blood and

Tissue kit according to the manufacturer’s instructions (Qiagen Sciences, Germantown, USA).

All dingo samples were verified as genetically ‘pure’ using a 23-marker DNA test developed for

distinguishing dingoes from dingo-dog hybrids [33, 34].

Illumina HD canine genotyping

Samples were genotyped on the 170K Illumina HD Canine SNP array (Illumina Inc., San

Diego, USA) at the Cornell Genomics Core Facility (Cornell University, Ithaca, USA). Geno-

types were called using GenomeStudio (Illumina Inc., San Diego, USA) and quality control fil-

tering was conducted in PLINK v1.7 [73]. Specifically, individuals missing more than 10% of

SNPs were excluded, SNP sites with more than 10% missing data were excluded and SNPs

with a minor allele frequency of less than 5% were excluded (resulting in 23 remaining sam-

ples). For some genetic analyses (Table 1), previously published genotype data from 5 New

Guinea singing dogs and/or 12 wolves (Canis lupus) were included [57, 74]. To investigate the

effect of domestic dog introgression further analyses included a set of 35 domestic dog sam-

ples: 8 Australian cattle dogs, 8 Borneo village dogs, 9 Vietnam village dogs and 10 Portugal vil-

lage dogs [57]. Australian cattle dogs were specifically incorporated as representative of

modern Australian domestic dog breeds. When combining datasets, genotype data were

merged un-filtered and then filtering steps were completed, as above.

Inbreeding and homozygosity

Using ‘Dataset A’, a sex check analysis was also performed in PLINK to confirm gender assign-

ments. As dingoes and NGSD are closely related [59], inbreeding statistics were calculated

using ‘Dataset A’. As such, individual inbreeding coefficients (equivalent to Wright’s FIS),

examining differences in the observed and expected homozygosity levels for each individual

were calculated in PLINK v1.7 [73]. FIS is a relative comparison between a sample and the ref-

erence populations expected and observed homozygosity. Individual inbreeding coefficients

were then averaged across geographical populations. Individual inbreeding coefficients were

also calculated for only dingoes versus only NGSDs, although it is important to note that

NGSDs are known to be inbred based on pedigree.

Clustering analysis

ADMIXTURE v1.23 [75] was used to perform maximum likelihood clustering analyses based

on autosomal markers. Clustering analyses were run with the following conditions: 10-fold

cross-validation and iterations for each K were run until the change in the log likelihood value

was below 0.1. Ten independent runs of each K value were completed, each using different

random seeds. The best K value was chosen by comparing the cross validation errors for each

Table 1. Description of datasets and samples used in analyses.

Dataset Samples Analyses

‘Dataset A’ 23 Dingoes + 5 NGSD Inbreeding, Clustering, PCA and Phylogenetics

‘Dataset B’ 23 Dingoes + 5 NGSD + 35 Dogs Clustering and PCA

‘Dataset C’ 23 Dingoes + 5 NGSD + 12 Wolves Phylogenetics

‘Dataset D’ 23 Dingoes + 12 Wolves + 35 Dogs Introgression modelling

https://doi.org/10.1371/journal.pone.0198754.t001
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K value between the independent runs [75]. CLUMPP v1.1.2 was used to compare and average

the Q matrices of the ten independent runs for this K value [76]. An average Q-plot for the

best K(s) was constructed using Distruct v1.1 [77]. The resulting Q-plot is a consensus of the

possible scenarios (or modes) for a specific K value. First, analyses were run using ‘Dataset A’.

A map depicting the population assignment of each sample was created using the maps pack-

age [78] in R v3.2.1 [79]. FST values between the four population clusters were calculated in

ADMIXTURE v1.23 [75]. Clustering analyses were then repeated, as above, using ‘Dataset B’,

to investigate the possibility of introgression from domestic dogs into dingoes.

Principal components analysis

A principal components analysis (PCA) was performed on ‘Dataset A’ in PLINK v1.9 [73, 80].

The top 20 eigenvalues and eigenvectors were calculated. The percentage variation that each

principal component (PC) vector accounts for was calculated using the following formula:

eigenvalue/(S of all eigenvalues) × 100. The top three PCA eigenvectors, accounting for the

largest percentage variance, were plotted using the rgl package [81] in R v3.2.1 [79]. To answer

questions concerning the likelihood of domestic dog introgression in dingoes the PC analyses

were repeated using ‘Dataset B’.

Phylogenetic analyses

The phylogenetic relationships between dingoes and NGSDs were investigated using SNPhylo

[82] a pipeline for constructing maximum likelihood (ML) trees from genome wide SNP data-

sets. First, ‘Dataset A’ was pruned for invariant SNPs and the remaining ancestry informative

SNPs were concatenated together in SNPhylo [82]. This pruned data was used for phylogenetic

analyses. Allele frequencies and association statistics were calculated in PLINK for ancestry

informative markers, as identified by SNPhylo [82] to investigate their utility in future genetic

studies. SNPs with Wald test values of p<10−4 were considered to be strongly associated with

population structure in the dingo and NGSD.

Concatenation is a method of combining sequences from multiple genetic loci and is partic-

ularly useful for intraspecific datasets where divergences may be recent [83]. However concate-

nation may introduce biases as a result of rate heterogeneity, differences in gene tree topology

and/or recombination [84]. Filtering of invariant sites, as employed by SNPhylo, may also bias

branch lengths. As such phylogenies should be treated conservatively. As implemented by the

SNPhylo pipeline [82], an unrooted ML tree using a Hidden Markov Model was constructed

in DNAml [85]. Non-parametric bootstrapping with 6000 repetitions was performed on the

ML tree using Phangorn [86] as implemented in the SNPhylo pipeline [82].

Additionally, SNPhylo [82] was used to create a pruned and ancestry informative

concatenated sequence for each sample in ‘Dataset C’. A rooted ML analysis was then run in

raxmlGUI [87] with a GTR + G substitution model and 2000 bootstrap replicates.

Introgression modeling

To investigate the extent of modern domestic dog introgression into dingoes D-statistics were

calculated using ADMIXTOOLS [88]. This analysis was run using Dataset D. The wolf popula-

tion (the W population) incorporated samples from four geographical wolf populations: Euro-

pean, Chinese, Middle Eastern, and Russian. Data from dog populations (the X populations)

in Borneo, Vietnam, Portugal and from the Australian cattle dog breed were included in the

analysis [57]. In the analysis, Alpine dingoes were the Y population and the non-alpine dingo

populations were the Z population. Standard error and Z-statistics were also calculated.

Biogeography of dingoes using SNPs
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Results

Illumina HD canine genotyping

Of the 25 dingoes genotyped, two were excluded from the analyses due to>10% missingness.

The remaining 23 dingoes from 5 geographical populations and 5 NGSDs (Table 2, doi:10.

5061/dryad.sq8d0) had a genotyping rate before filtering of 0.974, and 0.990 after filtering. A

total of 58,512 autosomal SNPs remained after filtering. A sex check performed in PLINK con-

firmed the gender identity of samples.

Inbreeding and homozygosity

Individual inbreeding coefficients (FIS) calculated based on 58,512 autosomal SNP loci sug-

gested that some dingo populations were inbred (Table 2). The four Fraser Island dingoes had

very high FIS values of 0.647–0.732 indicating an extreme level of inbreeding. Sampling loca-

tions for Fraser Island samples indicate that the dingoes came from different natal pack territo-

ries (Fig 2). Similarly, the NGSD population was highly inbred with FIS values ranging from

0.457–0.671. The Alpine and Simpson Desert populations had the lowest average FIS statistics.

Table 2. Gender and individual inbreeding coefficients for 23a dingoes and 5 NGSD (‘Dataset A’).

ID Geographical population Sex FIS (only dingoes or only NGSD) FIS (dingoes and NGSD) Average FIS (dingoes and NGSD)
Alpine 1 Alpine M -0.033 0.002 0.089

Alpine 2 Alpine M -0.011 0.038

Alpine 3 Alpine M 0.096 0.137

Alpine 4 Alpine F 0.297 0.331

Alpine 5 Alpine M -0.1 -0.060

Fraser 3 Fraser M 0.715 0.732 0.700

Fraser 4 Fraser M 0.625 0.647

Fraser 5 Fraser F 0.704 0.720

Fraser 7 Fraser M 0.683 0.702

Gibson 1 Gibson F 0.406 0.439 0.240

Gibson 2 Gibson F 0.072 0.122

Gibson 3 Gibson M 0.053 0.100

Gibson 4 Gibson F 0.208 0.250

Gibson 5 Gibson F 0.144 0.188

Northwestern 2 Gibson M 0.305 0.339

Kimberley 1 Kimberley F 0.234 0.271 0.215

Kimberley 2 Kimberley M 0.18 0.218

Kimberley 3 Kimberley M 0.103 0.142

Kimberley 4 Kimberley F 0.237 0.270

Northwestern 9 Kimberley F 0.138 0.175

Simpson 1 Simpson F 0.122 0.161 0.138

Simpson 2 Simpson M 0.053 0.097

Simpson 5 Simpson F 0.119 0.157

NGSD A NGSD M -0.289 0.457 0.561

NGSD B NGSD M 0.218 0.671

NGSD C NGSD M 0.034 0.594

NGSD D NGSD F 0.096 0.620

NGSD E NGSD M -0.28 0.461

a two dingoes of the original 25 were excluded for failing to adequately run (Fraser 6) or having more than 10% missing SNPs (Simpson 3).

https://doi.org/10.1371/journal.pone.0198754.t002
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Fig 2. Distribution of Fraser Island dingo samples and natal pack territories. The location of dingo samples is

indicated by enclosed grey circles and the boundaries of estimated natal pack territories adapted from Allen et al. [89]

are drawn in dark grey.

https://doi.org/10.1371/journal.pone.0198754.g002
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When inbreeding coefficients were calculated using only dingo data the values only changed

mildly. However, inbreeding coefficient values calculated using only NGSD data were different

from those calculated with dingo data; this is likely because all sampled NGSD were inbred (as

indicated by pedigree).

Clustering analyses

For ‘Dataset A’, clustering analyses indicated the best K was 4 (S1 Fig). ADMIXTURE analyses

suggest the presence of four population clusters in ‘Dataset A’: southeastern (SE), northwestern

(NW), Fraser Island (FI) and New Guinea Singing Dog (NGSD) (Figs 3 and 4). There is some

evidence of possible ancestry sharing between population clusters in some individuals, particu-

larly Alpine 1, Alpine 5 and the three Simpson Desert dingoes. FST values between the four

population clusters indicate a high level of differentiation and low gene flow between the popu-

lations (Table 3).

For ‘Dataset B’, analyses indicated the best K was 5 (S2 Fig). Results for K = 7 are also pre-

sented because this represents the number of geographical populations. Clustering analyses

incorporating a set of domestic and village dogs are inconsistent between values of K (Fig 5).

Modeling for K = 5 and K = 7 present conflicting data for Alpine dingoes. In K = 5 Alpine din-

goes share some ancestry with Vietnam village dogs and Portugal village dogs (Fig 5). How-

ever, when K = 7, we see significant ancestry sharing between the SE dingoes and Borneo

village dogs (Fig 5).

Fig 3. Maximum likelihood population clustering analysis on ‘Dataset A’ (23 dingoes and 5 NGSD) at 58,512 SNP

loci. Average Q-plot for K = 4 constructed in Distruct v1.1 [77]. Each column represents an individual and the

proportion population cluster identity. Population clusters are represented by colours: green for New Guinea Singing

Dog, red for southeastern, purple for Fraser Island and blue for northwestern.

https://doi.org/10.1371/journal.pone.0198754.g003
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Principal components analysis

For ‘Dataset A’, the top three PC vectors account for 20.5% (eigenvalue = 6.872), 15.1% (eigen-

value = 5.060) and 9.8% (eigenvalue = 3.276) of the genetic variance respectively and indicate

the presence of four population clusters: SE, FI, NW and NGSD. PC1 differentiates NGSDs

from dingoes, PC2 separates out SE dingoes and PC3 distinguishes FI dingoes from the other

populations (Fig 6). The three eastern most NW dingoes (from the Simpson Desert) cluster

slightly closer to the SE dingoes, a result of either historical mixing between the SE and NW

populations in this region or isolation by distance (Figs 4 and 5).

When PC analyses were repeated with ‘Dataset B’, we see the same four population clusters:

SE, FI, NW and NGSD as well as three new clusters representing the Vietnam and Borneo vil-

lage dogs, Portuguese dogs and Australian cattle dogs. The top three PC vectors accounted for

37.8% (eigenvalue = 20.763), 9.1% (eigenvalue = 4.992) and 5.5% (eigenvalue = 3.044) of the

Fig 4. Geographical map depicting sampling location of each sample from ‘Dataset A’ and its majority population

cluster identity. NGSD samples (plotted in Papua New Guinea) are from a captive North American population.

https://doi.org/10.1371/journal.pone.0198754.g004

Table 3. FST values between dingo and NGSD populations (‘Dataset A’). Calculated by ADMIXTURE (v1.23) based on 58,512 SNP loci.

NGSD Fraser Island Southeastern

NGSD - - -

Fraser Island 0.408 - -

Southeastern 0.354 0.61 -

Northwestern 0.238 0.431 0.421

https://doi.org/10.1371/journal.pone.0198754.t003
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genetic variance respectively. PC1 differentiates dingoes and NGSD from both Asian village

dogs and European dogs while PC2 and PC3 distinguish NGSD from dingoes and Portuguese

village dogs from ACD (Fig 7). It is interesting to note that NGSD and dingoes are well sepa-

rated from European dogs.

Fig 5. Maximum likelihood population clustering analysis on 23 dingoes, 5 NGSD, 8 Borneo village dogs, 9 Vietnam village dogs, 10 Portugal village dogs

and 8 Australian cattle dogs (‘Dataset B’) at 58,512 SNP loci. Average Q-plots constructed in Distruct v1.1 [77]. Each column represents an individual and the

proportion population cluster identity. Abbreviations represent populations: NGSD for New Guinea Singing Dog; NW for northwestern dingoes; FI for Fraser

Island dingoes; and SE for southeastern (Alpine) dingoes; BVD for Borneo village dogs; VVD for Vietnam village dogs; PVD for Portugal village dogs and ACD for

Australian cattle dogs. (A) Average Q-plot for K = 5. (B) Average Q-plot for K = 7.

https://doi.org/10.1371/journal.pone.0198754.g005
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Phylogenetic analyses

For ‘Dataset A’, SNPhylo identified 4913 SNPs that were variable and ancestry informative. Of

these a total of 460 SNPs were identified has having significant Wald test values (p<10−4) indi-

cating a strong association between these SNPs and geographical population. These SNPs may

be useful for developing a SNP assay to investigate population structure in a larger geographic

survey of dingoes. The unrooted ML tree constructed in DNAml [85] identified four major

populations: SE dingoes, FI dingoes, NW dingoes and NGSD (Fig 8). However, bootstrap sup-

port for the split between FI and NW dingoes is 60 indicating phylogenetic uncertainty.

To further explore the phylogenetic relationship between dingoes and NGSD a second

rooted analysis was completed using ‘Dataset C’, this incorporated 12 wolf (Canis lupus) sam-

ples as outgroup taxa. The rooted ML analysis in raxmlGUI [87] confirmed that NGSD form

Fig 6. Principal components analysis (PCA) based upon filtered whole genome SNP genotypes (58,512 sites) for

23 dingoes and 5 NGSD. Colours represent population clusters: red for SE dingoes, purple for FI dingoes, blue for

NW dingoes and green for NGSD. (A) PC 1 versus PC 2. (B) PC 1 versus PC 3.

https://doi.org/10.1371/journal.pone.0198754.g006

Fig 7. Principal components analysis (PCA) based upon filtered whole genome SNP genotypes (58,512 sites) for

23 dingoes, 5 NGSD, 8 Borneo village dogs, 9 Vietnam village dogs, 10 Portugal village dogs and 8 Australian

cattle dogs (‘Dataset B’). Colours represent population clusters: red for SE dingoes, purple for FI dingoes, blue for

NW dingoes, dark green for NGSD, light green for Borneo village dogs, orange for Vietnam village dogs, yellow for

Portugal village dogs and grey for Australian cattle dogs. (A) PC 1 versus PC 2. (B) PC 1 versus PC 3.

https://doi.org/10.1371/journal.pone.0198754.g007
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their own monophyletic group compared to dingoes (Fig 9) suggesting that the NGSD

diverged before the dingo populations differentiated. Additionally, the genome-wide SNP

phylogeny indicates that the FI dingo population is closely related to the NW dingo popula-

tions with bootstrap support of 73 (60 in unrooted phylogeny), representing phylogenetic

Fig 8. Maximum likelihood tree based upon 4,913 ancestry informative markers in 23 dingoes and 5 NGSD

(‘Dataset A’). The tree was constructed via the SNPhylo pipeline [82], with 6,000 non-parametric bootstrap replicates.

Bootstrap values located above nodes, values below 60 not shown. Colours represent population clusters: red for SE

dingoes, purple for FI dingoes, blue for NW dingoes and green for NGSD. Circles indicate mitochondrial lineage with;

black for NW and orange for SE [62]. Squares depict Y chromosome haplogroup with; green for H1, blue for H3 and

red for H60 [67].

https://doi.org/10.1371/journal.pone.0198754.g008
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Fig 9. Maximum likelihood tree constructed based upon 6,288 informative SNPs in 23 dingoes, 5 NGSD and 12

wolves (‘Dataset C’). The 12 wolf samples [74] were added as outgroup taxa. Tree constructed in raxmlGUI [87] using

a GTR + G substitution model and 2000 bootstrap replicates. Bootstrap values located above nodes, values below 70

not shown. Colours represent population clusters: red for SE dingoes, purple for FI dingoes, blue for NW dingoes,

green for NGSD and gray for wolves.

https://doi.org/10.1371/journal.pone.0198754.g009
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uncertainty. The split between the SE and NW dingo populations is strongly supported with a

bootstrap value of 87 (100 in unrooted phylogeny).

Introgression modeling

Using ‘Dataset D’, D statistics were used to investigate the possibility of introgression from

domestic dogs into dingoes. Standard error was low and Z scores indicated that all D statistics

were significant, ie Z score greater than 3 or less than -3 (Fig 10). These analyses suggest

admixture into the southeastern dingo (Alpine) population from Vietnam and Borneo village

dogs but not from European dogs (Fig 10). In contrast, D statistics reveal possible shared

genetic ancestry or admixture into northwestern (and Fraser Island) dingoes from Portugal

village dogs and Australian cattle dogs (Fig 10).

Discussion

Current biogeographic structure in dingoes

There is now strong evidence of at least three genetically distinct dingo lineages in Australia:

SE dingoes, FI dingoes, NW dingoes, [62, 67]. NGSDs form a separate but closely related dis-

tinct lineage (Figs 9 and 10). Population clustering analyses indicated that the SE and FI

Fig 10. Introgression testing using D statistics based on 58,512 SNP sites for 23 dingoes, 5 NGSD, 8 Borneo village

dogs, 9 Vietnam village dogs, 10 Portugal village dogs, 8 Australian cattle dogs and 12 wolves (‘Dataset D’). The

topology tested was W (wolves), X (dogs), Y (Alpine dingoes) and Z (non-Alpine dingoes). The non-Alpine dingo

populations (Z population) are represented as pink dots for Fraser Island dingoes and black dots for northwestern

dingoes. Values next to dots indicate the range of D statistic values with error; italics indicate negative D statistic

values.

https://doi.org/10.1371/journal.pone.0198754.g010
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dingoes form discrete groups, whilst the dingoes from the Kimberley, Simpson Desert and

Gibson Desert cluster together in a NW population (Figs 3–5). Principal components analysis

also identified the presence of three dingo population clusters distinguishable from the NGSD

(Figs 6 and 7). Interestingly, whilst the NGSD, FI and NW clusters were tightly clustered, the

SE samples were not. This suggests that the SE population is more heterogeneous than the

other dingo and NGSD populations perhaps due to greater dispersal and mixing in this popu-

lation [29] or introgression from modern domestic dogs.

Phylogenetic analyses suggest that biogeographical patterns depicted in the genome wide

SNP data (Figs 8 and 9) are similar to those observed in mitochondrial and nuclear gene data

[62], with two key differences. The presence of at least two dingo populations is consistent

across all genetic markers [62, 67]. However, mitochondrial data suggested that SE and FI

dingo populations are closely related whilst the whole genome SNP data, presented here, and

Y-chromosome data suggest that FI dingoes may be more closely related to the NW dingo

populations [62, 67]. Bootstrap support for the FI/NW population grouping is low at 60–73%

suggesting there is some uncertainty concerning the relationship of the FI population to the

other dingo populations (Figs 8 and 9). This uncertainty could be a reflection of the different

evolutionary histories of the maternal and autosomal genetic markers. One hypothesis to

explain the results is that the FI population is the product of an initial foundation from the

southeastern mitochondrial lineage, followed by paternal introgression from the northwestern

lineages. It is possible that historical human movements between mainland Australia and Fra-

ser Island by Indigenous Australians may have facilitated historical paternal introgression.

Clustering, phylogenetic, FST and PCA analyses suggest that the FI dingo population currently

forms a discrete lineage with little recent gene flow from the mainland.

Are dingo populations evolutionarily significant units (ESUs)?

A population is an evolutionarily significant unit (ESU) if it is: (1) geographically separated;

(2) is genetically differentiated due to reduced gene flow or; (3) carries locally adapted pheno-

typic traits [90, 91]. FST values between the four population clusters suggest that gene flow

between dingo populations is low, and that populations are highly divergent (Table 3). An

alternative hypothesis is that populations are genetically intermediate. Published mitochon-

drial data suggests that there is strong geographic subdivision between dingo lineages and that

plausibly the lineages diverged outside Australia [62]. SNP and Y-chromosome data indicates

that there may be some admixture between geographically subdivided lineages, specifically

between the FI and SE populations and between the NW and SE populations [67]. SNP data

also shows some evidence of limited gene flow or ancestry sharing between the SE and FI pop-

ulations and NW (Simpson Desert) dingoes (Figs 3 and 5). This may be the result shared

ancestry, historical mixing between dingo populations or modern gene flow. Higher levels of

dispersal in southeastern Australia due to widespread lethal control and the disruption of

dingo social structures may also have modified historical gene flow patterns either driving or

inhibiting gene flow between dingo populations [29]. Molecular dating suggests the genetic

lineages diverged approximately 8,000 years BP, significantly before the presence of modern

dispersal barriers such as the ‘dingo fence’ [62]. Indeed, whilst the ‘dingo fence’ fence does

restrict the movement of dingoes it is unlikely to be completely impenetrable and so restricted

gene flow may occur [7]. Phenotypic differences have also been observed between dingoes in

different geographic regions, this is perhaps the result of local adaption or differences in evolu-

tionary history [92]. Ultimately, there is evidence of genetic and possibly phenotypic differenti-

ation between extant dingo populations, this combined with geographic isolation, supports the

designation of three dingo ESUs: SE, FI and NW. The maintenance of population structure in
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the absence of obvious physical barriers suggests that introduction history, behavior and/or

biology is shaping and maintaining biogeographic differentiation in the dingo. As distinct

ESUs, the three dingo populations should ideally be managed separately.

Hybridization or shared ancestry

We used Bayesian clustering, PCA and D-statistics to investigate hypotheses concerning the

evolutionary history of dingoes and the presence of domestic dog introgression Hybridization

between dingoes and dogs is considered to be widespread in southeastern Australia [33].

There are fears that the dingo will lose its identity because of ongoing hybridization with Euro-

pean dogs [33]. At first, we hypothesized that dingoes in southeastern Australia may carry a

low level of modern European domestic dog introgression and that this may be responsible for

the observed heterogeneity in our genetically ‘pure’ southeastern dingo samples (Fig 6). This

was initially consistent with clustering analyses with K = 5, which showed some shared ances-

try between southeastern dingoes and Portugal village dogs (Fig 5). However, clustering analy-

ses with K = 7 suggest that southeastern dingoes share ancestry with South East Asian village

dogs rather than European breed dogs (Fig 5). Additionally, D statistics provide additional evi-

dence that the southeastern dingoes share ancestry with South East Asian dogs, represented

here by village dogs from Borneo and Vietnam (Fig 10). One hypothesis is that there may have

been gene flow between island South East Asian dogs and dingoes in the last few hundred

years. However, ethnographic and human DNA studies suggest that there is only limited evi-

dence of contact between South East Asia and Australia during this time period [93–98]. The

most logical hypothesis is that the southeastern dingoes ancestors originated in South East

Asia and thus share ancestry with South East Asian dogs [48, 50, 53, 62, 67]. Interestingly this

signal of shared ancestry with South East Asian dogs is observed only in southeastern dingoes

(Alpine), suggesting that perhaps the two dingo populations have differing ancestral popula-

tions [62, 67].

Clustering analyses did not find evidence of admixture within northwestern or Fraser

Island dingoes from Asian village dogs or European domestic dogs (Fig 5). This is consistent

with evidence that domestic dog hybridization is less widespread in northwestern and central

Australia [33]. However, D statistics identified the presence of ancestry sharing from Euro-

pean derived dogs (Portugal village dogs and Australian cattle dogs) into northwestern and

Fraser Island dingoes (Fig 10). Perhaps this ancestry sharing between Australian cattle dogs

and dingoes is a result of dingoes being used in the foundation of the breed. Indeed, the lack

of admixture signal observed in clustering analyses suggests that any introgression was likely

historical. One hypothesis is that northwestern and Fraser Island dingoes share ancestry with

a dog population that shares more affinity with European dogs than Asian dogs, for example

from India or Java. Or share ancestry with dogs from an un-sampled South East Asian region.

Intriguingly this might fit with evidence of a Pama–Nyungan language expansion in North-

ern Australia during the Holocene period [99] or a possible human immigration from India

[100]. However, these hypotheses are controversial [96, 98, 101–103]. Indeed, PCA analyses

indicate that all dingoes are more closely related to South East Asian dogs than to European

dogs (Fig 7). As first suggested by Cairns and Wilton [63], these differences in ancestry shar-

ing patterns between the distinct dingo populations is likely evidence that the dingo lineages

diverged outside of Australia and had different evolutionary origins in Asia. To address this

uncertainty future research should aim to incorporate additional dingoes from across Austra-

lia and a larger number of dogs from both South East Asia and modern European domestic

dog breeds.
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Inbreeding in wild dingo populations

Inbreeding coefficients can be used to assess the genetic health of a population or species [38,

39]. High homozygosity levels may indicate when a population is genetically unhealthy and at

risk of inbreeding depression. Inbreeding and resulting inbreeding depression can lead to the

decline and/or extinction of the species or population [37–43]. Domestic dogs, specifically

purebred domestic breeds, typically have elevated levels of inbreeding due to the effect of

human artificial selection, population bottlenecks and line breeding [104]. Inbreeding coeffi-

cient values for domestic dogs are reported to range between −0.2 and 0.19 [104–107].

Inbreeding in wild canid populations is reported to be lower than domestic dogs, with coyotes

FIS = 0.04 [105] and wolves FIS = 0.06–0.08 [105, 108, 109]. An inbred Scandinavian wolf popu-

lation provides an example of how inbreeding depression can lead to increasing physiological

anomalies including lower lifespan and elevated incidences of congenital defects [110]. The SE

and Simpson Desert (NW) dingo populations have average inbreeding coefficient values simi-

lar to those of wild canid populations, whilst the Kimberley (NW) and Gibson Desert (NW)

populations have slightly elevated average inbreeding levels (Table 2). Simpson Desert (NW)

and SE dingo populations are under higher levels of human-mediated disruption, with ongo-

ing management action plans possibly contributing to elevated dispersal/immigration events

in these populations [29].

We observed high inbreeding levels in Fraser Island dingoes, FIS = 0.647–0.732 (Table 2).

Comparison of the Fraser Island sample locations to reported dingo pack territory boundaries

suggests that these dingoes were from different natal territories and thus are unlikely to be sib-

lings (Fig 2) [89]. High inbreeding suggests that the FI dingo population may not be genetically

healthy and the viability of the population may be compromised. This high inbreeding could

be the result of a low foundation population followed by a long period of isolation and may

have been exacerbated by lethal control activities. The FIS range observed in the NGSD, FIS =

0.457–0.671, was also extremely high. NGSD in captive populations were likely experiencing

high inbreeding due to a limited founder population [111]. However, sample sizes were quite

small. It is also possible that inbreeding coefficient levels were raised due to the ascertainment

bias caused by phylogenetic distance between dingoes and the dog breeds used to develop the

Illumina HD Canine Chip. SNP array technologies have been successfully applied to other

canids such as wolves and coyotes, with limited ascertainment bias observed [54, 112, 113].

Further research and sampling is needed to examine these patterns of inbreeding.

Conservation management implications

As the three dingo populations, SE, FI and NW, may be considered separate ESUs, existing

management and conservation strategies may need to be revised. Dingoes are widespread

across the mainland (Fig 1); however, they are subject to high levels of lethal control particu-

larly in eastern Australia [7, 92]. Dingoes in southeastern Australia are also under increasing

pressure hybridization with domestic dogs [7, 33]. Recently, calls have been made for revised

management strategies to protect the unique identity of southeastern dingoes [67]. This may

include measures such as reducing lethal management around national parks, encouraging

landholders to uptake predator friendly farming practices and neutering pet dogs to reduce

future hybridization. Government agencies should also undertake surveys to identify high

genetic integrity dingo populations and lethal control management may need to be reevaluated

in regions with high genetic integrity dingo populations.

Hybridization with domestic dogs is considered a serious issue for the conservation of din-

goes [32, 33]. Comparison of dingoes to domestic dogs using whole genome SNP data may

help uncover markers for distinguishing dingoes from their hybrids. To investigate SNP
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markers useful in distinguishing dingoes, hybrids and domestic dogs further research incorpo-

rating dingoes, known hybrids, South East Asian village dogs and Australian domestic dogs

will be necessary. This may lead to improvements in the accuracy of genetic testing for hybrid-

ization and also knowledge concerning the prevalence and factors affecting hybridization

between dingoes and domestic dogs. New frameworks for the conservation and management

of dingoes considering hybridization may need to be developed.

This study has important implications for the management of dingoes on Fraser Island.

Current population estimates for dingoes on Fraser Island are approximately 100–200 individ-

uals [45, 89, 114], down from approximately 300 in the 1990s [115]. The FI dingo population

is thought to serve as an important reservoir of pure dingoes isolated from mainland popula-

tions and relatively free from hybridization [32, 46]. High levels of inbreeding, as observed by

this study (Table 2), are concerning for the persistence and sustainability of dingoes on the

Island. The Fraser Island Dingo Management Plan reports that the primary aim of the strategy

is to “ensure conservation of a sustainable dingo population” [116]. Allen et al. [89] argue that

the Fraser Island dingo population is demographically stable and thus sustainable. Our data

indicate that the population may be compromised by severe inbreeding and could require

genetic rescue. Without further information regarding the genetic health of the population,

management decisions to cull dingoes should be made cautiously. This data highlights the

need for regular genetic monitoring on Fraser Island to track genetic diversity and possible

inbreeding depression.

Genetic rescue has been used to safeguard inbred populations of threatened species around

the world, including Florida panthers (Puma concolor coryi), mountain pygmy possums (Bur-
ramys parvus) and Rocky Mountain bighorn sheep (Ovis canadensis) [44, 117–120]. This con-

troversial tool may need to be considered during the ongoing management of both Fraser

Island dingoes and NGSD. Genetic rescue of the Fraser Island dingo population will need to

carefully consider the most suitable migrant population given that Fraser Island dingoes may

be considered an ESU distinct from both mainland dingo lineages. Introduction of new

genetic lineages to the captive NGSD population may also be required to avoid inbreeding

depression; however, this will likely prove difficult given sightings of wild NGSD have been

scarce since the 1950s and due to the remote and rugged mountain habitat [111].

Conclusions

Whole genome SNP data indicate that there are at least three divergent dingo populations

forming discrete conservation units (ESUs). This builds upon previously published mitochon-

drial and Y-chromosome studies [62, 67]. FI dingoes form a distinct population from the

mainland dingo lineages. However, historical human movements between mainland Australia

and Fraser Island may have facilitated immigration between mainland and FI populations.

There is some evidence of ancestry sharing between southeastern dingoes and South East

Asian village dogs, either due to ancestral origin or historical admixture. We also identified

some evidence of admixture into northwestern and Fraser Island dingoes from European

derived dogs. This might be the result of geographical origin, historical admixture or the use of

dingoes in the foundation of some modern dog breeds. The different admixture patterns indi-

cate that the three dingo populations may have different evolutionary histories or origins.

This study highlights the need to conserve dingoes from all geographical regions of Aus-

tralia to preserve the full range of genetic diversity and identity of the dingo. However, din-

goes in southeastern Australia are in urgent need of protection due to the increased pressures

of lethal control and hybridization in the region. Concerningly, FI dingo populations and the

captive NGSD population appear to be under threat of inbreeding. Management strategies
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may need to be adapted to preserve and improve the genetic health of these important canid

populations.
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68. Galtier N, Nabholz B, GlÉMin S, Hurst GDD. Mitochondrial DNA as a marker of molecular diversity: a

reappraisal. Mol Ecol. 2009; 18(22): 4541–50. https://doi.org/10.1111/j.1365-294X.2009.04380.x

PMID: 19821901

69. Humphries EM, Winker K. Discord reigns among nuclear, mitochondrial and phenotypic estimates of

divergence in nine lineages of trans-Beringian birds. Mol Ecol. 2011; 20(3): 573–83. https://doi.org/10.

1111/j.1365-294X.2010.04965.x PMID: 21199027

70. Rubinoff D, Holland BS. Between two extremes: mitochondrial DNA is neither the panacea nor the

nemesis of phylogenetic and taxonomic inference. Syst Biol. 2005; 54(6): 952–61. https://doi.org/10.

1080/10635150500234674 PMID: 16385775

71. Toews DPL, Brelsford A. The biogeography of mitochondrial and nuclear discordance in animals. Mol

Ecol. 2012; 21(16): 3907–30. https://doi.org/10.1111/j.1365-294X.2012.05664.x PMID: 22738314

72. Zink RM, Barrowclough GF. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol. 2008;

17(9): 2107–21. https://doi.org/10.1111/j.1365-294X.2008.03737.x PMID: 18397219

73. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81(3):

559–75. https://doi.org/10.1086/519795 PMID: 17701901

74. Axelsson E, Ratnakumar A, Arendt M-L, Maqbool K, Webster MT, Perloski M, et al. The genomic sig-

nature of dog domestication reveals adaptation to a starch-rich diet. Nature. 2013; 495(7441): 360–4.

https://doi.org/10.1038/nature11837 PMID: 23354050

75. Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estima-

tion. BMC Bioinf. 2011; 12(1): 246.

76. Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with

label switching and multimodality in analysis of population structure. Bioinformatics. 2007; 23(14):

1801–6. https://doi.org/10.1093/bioinformatics/btm233 PMID: 17485429

77. Rosenberg NA. DISTRUCT: a program for the graphical display of population structure. Mol Ecol

Notes. 2004; 4(1): 137–8.

78. Brownrigg R, Minka TP, Becker RA, Wilks AR. maps: Draw Geographical Maps. 2014.

79. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria:

R Foundation for Statistical Computing; 2010.

80. Purcell S, Chang C. PLINK 1.9. 2014.

81. Adler D, Murdhoch D, {others}. rgl: 3D visualization device system (OpenGL). 2014.

82. Lee T-H, Guo H, Wang X, Kim C, Paterson AH. SNPhylo: a pipeline to construct a phylogenetic tree

from huge SNP data. BMC Genomics. 2014; 15(1): 162.

83. Gadagkar SR, Rosenberg MS, Kumar S. Inferring species phylogenies from multiple genes:

Concatenated sequence tree versus consensus gene tree. J Exp Zool B Mol Dev Evol. 2005; 304B(1):

64–74. https://doi.org/10.1002/jez.b.21026 PMID: 15593277

84. Edwards SV. Is a new and general theory of molecular systematics emerging? Evolution. 2009; 63(1):

1–19. https://doi.org/10.1111/j.1558-5646.2008.00549.x PMID: 19146594

85. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sci-

ences, University of Washington, Seattle2005.

86. Schliep KP. Phangorn: phylogenetic analysis in R. Bioinformatics. 2011; 27(4): 592–3. https://doi.org/

10.1093/bioinformatics/btq706 PMID: 21169378

87. Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012; 12: 335–7.

88. Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y, et al. Ancient admixture in human his-

tory. Genetics. 2012; 192: 1065–93. https://doi.org/10.1534/genetics.112.145037 PMID: 22960212

89. Allen BL, Higginbottom K, Bracks JH, Davies N, Baxter GS. Balancing dingo conservation with human

safety on Fraser Island: the numerical and demographic effects of humane destruction of dingoes.

Aust J Environ Manage. 2015; 22(2): 197–215. https://doi.org/10.1080/14486563.2014.999134

90. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK. Considering evolutionary processes in

conservation biology. Trends Ecol Evol. 2000; 15(7): 290–5. https://doi.org/10.1016/S0169-5347(00)

01876-0 PMID: 10856956

91. Moritz C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol Evol. 1994; 9(10):

373–5. https://doi.org/10.1016/0169-5347(94)90057-4 PMID: 21236896

92. Corbett LK. The Dingo in Australia and Asia. Sydney: University of NSW Press; 2001.

Biogeography of dingoes using SNPs

PLOS ONE | https://doi.org/10.1371/journal.pone.0198754 June 11, 2018 23 / 25

https://doi.org/10.1002/ece3.3487
http://www.ncbi.nlm.nih.gov/pubmed/29188009
https://doi.org/10.1111/j.1365-294X.2009.04380.x
http://www.ncbi.nlm.nih.gov/pubmed/19821901
https://doi.org/10.1111/j.1365-294X.2010.04965.x
https://doi.org/10.1111/j.1365-294X.2010.04965.x
http://www.ncbi.nlm.nih.gov/pubmed/21199027
https://doi.org/10.1080/10635150500234674
https://doi.org/10.1080/10635150500234674
http://www.ncbi.nlm.nih.gov/pubmed/16385775
https://doi.org/10.1111/j.1365-294X.2012.05664.x
http://www.ncbi.nlm.nih.gov/pubmed/22738314
https://doi.org/10.1111/j.1365-294X.2008.03737.x
http://www.ncbi.nlm.nih.gov/pubmed/18397219
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1038/nature11837
http://www.ncbi.nlm.nih.gov/pubmed/23354050
https://doi.org/10.1093/bioinformatics/btm233
http://www.ncbi.nlm.nih.gov/pubmed/17485429
https://doi.org/10.1002/jez.b.21026
http://www.ncbi.nlm.nih.gov/pubmed/15593277
https://doi.org/10.1111/j.1558-5646.2008.00549.x
http://www.ncbi.nlm.nih.gov/pubmed/19146594
https://doi.org/10.1093/bioinformatics/btq706
https://doi.org/10.1093/bioinformatics/btq706
http://www.ncbi.nlm.nih.gov/pubmed/21169378
https://doi.org/10.1534/genetics.112.145037
http://www.ncbi.nlm.nih.gov/pubmed/22960212
https://doi.org/10.1080/14486563.2014.999134
https://doi.org/10.1016/S0169-5347(00)01876-0
https://doi.org/10.1016/S0169-5347(00)01876-0
http://www.ncbi.nlm.nih.gov/pubmed/10856956
https://doi.org/10.1016/0169-5347(94)90057-4
http://www.ncbi.nlm.nih.gov/pubmed/21236896
https://doi.org/10.1371/journal.pone.0198754
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