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a b s t r a c t

About 75% of dogs worldwide are free to roam and reproduce, thus creating locally over-
abundant populations. Problems caused by roaming dogs include diseases transmitted to
livestock and humans, predation on livestock, attacks on humans, road traffic accidents, and
nuisance behavior. Nonsurgical fertility control is increasingly advocated as more cost-
effective than surgical sterilization to manage dog populations and their impact. The aims
of this reviewwere to 1) analyze trends in numbers of scientific publications on nonsurgical
fertility control for dogs; 2) illustrate the spectrum of fertility inhibitors available for dogs; 3)
examinehowdifferences betweenconfined and free-roamingdogsmight affect the choice of
fertility inhibitors to be used in dog populationmanagement; and 4) provide a framework of
criteria toguidedecisions regarding theuseof nonsurgical fertility control fordogpopulation
management. The results showed that the 117 articles published between 1982 and 2011
focussed on long-term hormonal contraceptives, such as gonadotropin-releasing hormone
agonists, immunocontraceptives, and male chemical sterilants. The number of articles
published biennially increased fromone tofivepapers produced in the early1980s to10 to20
in the past decade. Differences between confined dogs and free-roaming dogs include
reproduction and survival as well as social expectations regarding the duration of infertility,
the costs of sterilization, and the responsibilities for meeting these costs. These differences
are likely to dictate which fertility inhibitors will be used for confined or free-roaming dogs.
The criteria regarding the use of fertility control for dog populationmanagement, presented
as a decision tree, covered social acceptance, animalwelfare, effectiveness, legal compliance,
feasibility, and sustainability. The review concluded that the main challenges for the future
are evaluating the feasibility, effectiveness, sustainability, and effects of mass nonsurgical
sterilization campaigns on dog population size and impact aswell as integrating nonsurgical
fertility control with disease vaccination and public education programs.

� 2013 Published by Elsevier Inc.

1. Introduction

The global dog population is estimated to be around 700
million [1]. National and international organizations
working on dog population management and welfare often
classify dogs in the following categories, according to

ownership and degree of confinement: 1) owned and
permanently confined within household premises; 2)
owned by a single household but free to roam; 3) “com-
munity owned,” with several households or people
providing food and shelter but free to roam; or 4) own-
erless and free-roaming. About 75% of the worldwide dogs,
often referred to as stray, are free to roam and reproduce
[2]. This creates locally overabundant populations of ani-
mals that are often in poor health and have a high turnover
because of low survival rates.
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Problems caused by free-roaming dogs include diseases
transmitted to livestock and humans, predation on live-
stock, bites, road traffic accidents, and nuisance behavior
such as barking and soiling [3,4]. Although some studies
found that the majority of dog bites are due to dogs that
are owned by or known to the victims rather than to strays
[5–7], free-roaming dogs share some of the responsibility
for bites [4]. For instance in Samoa, 56% of bites occurred in
a public place [6]; in Bangalore (India), 64% of dog bites
were associated with stray dogs [8]. Among the zoonoses,
rabies is of particular concern for humans and livestock:
dogs are responsible for >90% of the estimated 55,000
human deaths and for the millions of people that each year
receive postexposure prophylaxis following a bite [9]. The
majority of deaths and postbite vaccinations occur in Asian
and African countries, which can barely afford this eco-
nomic burden [9]. Dogs also pose serious threats to wildlife
and biodiversity as predators, competitors, transmitters of
disease, and by interbreeding with native species [1,10].

Traditional efforts to mitigate problems caused by free-
roaming dog populations rely on public education, disease
vaccination, and population management, the latter carried
out through lethal control or through fertility control. Lethal
control is increasingly opposed by local communities,
nongovernmental agencies, and animal welfare organiza-
tionsbecauseof its lackofhumaneness andeffectivenessand
because of the impact of toxicants on the environment and
on nontarget species [11,12]. Culling has also a social impact,
because many free-roaming dogs do have owners that will
oppose indiscriminate killing. In addition, people may be
against culling for religious beliefs [13,14]; for instance,
Buddhism and Hinduism oppose animal slaughtering [13].

Dog population management has focused recently on
surgical sterilization, often provided as subsidized or free
services to dog owners or through catch, neuter, and
release of free-roaming dogs. Although surgical steriliza-
tion is more socially acceptable than culling, it is relatively
expensive because of the use of drugs, specialized staff, and
facilities, and has potential welfare risks because of the use
of anesthetics [15–17]. In addition, some dog owners are
opposed to surgical sterilization, citing compassion, un-
necessary procedure, cost, and behavioral changes as rea-
sons against this method [15,18].

Contraceptives and sterilants (hereafter referred to as
fertility inhibitors or fertility control agents unless other-
wise specified) could provide a cost-effective, humane
alternative to surgical sterilization. In recent years, the po-
tential market for these drugs and a growing public interest
in alternatives to surgical sterilization for companion ani-
mals, wildlife, and livestock have promoted investments
into the development of fertility inhibitors. Nonsurgical
fertility control is increasingly advocated for the resolution
of human–wildlife conflicts [19,20] and as alternatives to
surgical sterilization in livestock, zoo, and companion ani-
mals [21]. In companion animals, fertility inhibitors areused
for preventing reproduction, suppressingnuisance behavior
such as spraying, roaming, and aggressiveness and for
treating medical conditions [22,23]. Nonsurgical steriliza-
tion of free-roaming dogs has the potential to bemore cost-
effective than surgical sterilization in reducing the size and
impact of dog populations as many more animals can be

treated comparedwith the numbers that can be neutered or
spayed per unit time [16,24]. The first part of this review
analyzes trends in the number of scientific publications on
nonsurgical sterilization for dogs, used as an indicator of
public growing interest in this field. The second part illus-
trates fertility inhibitors currently available orwidely tested
on wildlife and on companion animals.

Previous reviews of fertility inhibitors for companion
animals paid relatively little attention to the differences
between confined and free-roaming dogs in terms of
reproduction, survival, or owner and/or community ex-
pectations regarding use and outcomes of fertility control.
The third part of the review discusses how these differ-
ences might affect the choice of drugs used to control
fertility in dogs, with particular focus on fertility inhibitors
that are likely to be employed for large-scale field appli-
cations. The fourth part of the review examines nonsurgical
sterilization in the wider context of dog population man-
agement and provided a framework of criteria to guide
decisions in this area.

2. Trends in numbers of scientific publications on
nonsurgical sterilization for dogs

To analyze trends in numbers of scientific publications
on nonsurgical sterilization for dogs in the past 30 years,
we used a text search approach on four databases: BIOSIS,
CAB Abstracts, Zoological Records, and Medline, all
accessed on October 12, 2012. We used the following key-
words in the title or the abstract of publications: “dog,”
“fertility control,” “fertility inhibition/inhibitor,” “immu-
nocontraception/immunocontraceptive,” “reproductive
inhibition/inhibitor,” “contraception/contraceptive,” “ster-
ilization.” The results of database searches were used to
obtain the following data: 1) number of articles published
per year; 2) number of gender-specific applications of
fertility inhibitors (i.e., females only, males only, or both);
3) type of study, classified as in vivo, in vitro, or review or
model; and 4) type of contraceptive, divided into “male
sterilant” (including only drugs delivered through testic-
ular injection), “immunocontraceptives,” “GnRH agonists
and antagonists,” “synthetic progestins,” and “other.” Re-
views were included only if they explicitly mentioned dogs.
Only articles that referred explicitly to fertility inhibitors
for dogs were included; publications aimed at evaluating
sterilants and contraceptives for their therapeutic uses
were not included. For ease of presentation, the number of
articles published every 2 years was calculated.

The results showed that 117 articles were published
between 1982 and 2011. The trend indicated that the
number of publications increased considerably from one to
five articles published biennially in the early 1980s to mid-
1990s to 10 to 20 in the most recent decade (Fig. 1).

Possible reasons for the increase include: 1) progress in
the elucidation of the molecular mechanisms regulating
fertility in dogs; 2) availability of new technologies, such as
slow-release implants, that widened the spectrum of ap-
plications for fertility control in dogs; 3) pressure from the
public and from animal welfare organizations to develop
alternative methods to lethal control or to surgical sterili-
zation; and 4) advancements in several, parallel fields, such
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as contraceptives developed for livestock and wildlife
[22,25,26].

Out of the 117 articles, 62% (n ¼ 73) referred to in vivo
and in vitro empirical studies and the remaining to reviews
or models. Of the 64 in vivo studies, 51.5% (n ¼ 33) were
carried out on females only, 47% (n¼ 30) onmales only, and
one study (1.5%) on both genders. Fertility inhibitors used
in the in vivo studies were 16% (n ¼ 10) male sterilants, 17%
(n ¼ 11) immunocontraceptives, 56 % (n ¼ 36) GnRH ago-
nists and antagonists, 11% (n ¼ 7) synthetic progestins (n ¼
4) and other contraceptives (n ¼ 3).

3. Contraceptives and sterilants

Chemical fertility control can be achieved through
contraception, which prevents the birth of offspring but
maintains fertility or by sterilization, which renders ani-
mals infertile [27,28]. GnRH is one target for fertility
inhibitors. GnRH controls the release of the pituitary go-
nadotropins, LH and FSH, which in turn control the pro-
duction of sex hormones and ultimately ovulation,
spermatogenesis, and sexual behavior. In females, a further
target for contraception is the zona pellucida (ZP), a group
of proteins that surrounds the ovulated egg and allows
species-specific sperm recognition and fertilization. In
males, sterilization can also be achieved by chemicals that
cause testicular sclerosis and permanent sterility.

The following section presents a brief overview of
fertility control agents commercially available or widely
tested on free-living wildlife, zoo animals, and cats and
dogs. Taking into account field applications for free-roaming
dogs, the review included only those drugs that induce
infertility for at least 6 to 12 months after one or two doses.
Some examples of contraceptives that are very effective in
fully confined companion animals but unlikely to be suitable
for dog population management are provided. Unless
explicitly mentioned, most of the information on contra-
ceptives for zoo animals was derived from the Association
of Zoos and Aquariums Wildlife Contraception Center at the
St. Louis Zoo [29], and information on dogs and cats from
the Alliance for Contraception in Cats and Dogs [22].

3.1. Hormonal methods

Several steroid hormones, such as progestins, estrogens,
and androgens, have been used as reproductive inhibitors

in dogs, zoo animals, and in some wildlife species. Higher
doses of these hormones are required to block ovulation
than to achieve contraception; thus, it is possible that
ovulation and behavioral signs of estrus occur in animals
that are otherwise unable to conceive [22]. Synthetic pro-
gestins include megestrol acetate (MA), melengestrol ace-
tate (MGA) and levonorgestrel. MA, used for dogs and cats
over several decades under different brand names, pre-
vented estrus in 92% of bitches when administered orally
for 8 days, starting at a very specific time of the estrous
cycle (proestrus) [30]. These specific requirements make
MA a classic example of a contraceptive that is very effec-
tive for confined companion animals but unsuitable for
free-roaming dogs. MGA has been widely used in zoo ani-
mals and is very effective on many carnivore species, pri-
mates, and ungulates. Delivered as an implant, MGA
induces infertility for at least 2 years or longer, depending
on species. An MGA implant may vary in cost between US$
25 and 75, depending on species and body weight [29].
However, MGA is associated with a variety of uterine pa-
thologies and its use is not generally recommended for
long-term contraception of canids and felids [27,28,31].
Similarly, synthetic progestins are not recommended for
pregnant animals because in some species they may induce
embryonic resorption, stillbirth, or abortion [32]. Levo-
norgestrel is a synthetic progestin used as the active
component of a multiyear implant contraceptive originally
approved by the US Food and Drug Administration for
human contraception and known as Norplant (Wyeth-
Ayerst) [33]. Because of side effects such as migraine,
irregular menstrual cycles, and weight changes, the drug
was withdrawn from several markets but is still used for
human contraception in others [34]. In animals, levonor-
gestrel has been used for long-term inhibition of repro-
ductionwithout apparent adverse side effects. For instance,
levonorgestrel implants provided �3 to 4 years of contra-
ception in tammar wallabies (Macropus eugenii) [35], gray
kangaroos (Macropus giganteus) [36], and koala (Phasco-
larctos cinereus) females [37]. Levonorgestrel implants
induced infertility in captive Cotton-top tamarins (Saguinus
oedipus) for 19 to 50 weeks [38] and in domestic cats for at
least 1 year [39]. Because the patent on levonorgestrel
implants has recently expired, at least in Australia, it is now
possible to obtain these products for US$ 10 per dose
(G. Coulson, personal communication), although no trial
has been published on effects and effectiveness in dogs.

Other hormonal methods are based on GnRH agonists,
which are proteins that mimic GnRH and stimulate pro-
duction and release of FSH and LH. The treatment with
GnRH agonists initially causes estrus and ovulation, also
known as the “flare-up” effect, followed by prolonged
ovarian quiescence [22,25]. Female dogs treated with a
GnRH agonist implant should be considered fertile for the
following 3 to 4 weeks [29,40]. GnRH agonists also cause a
temporary enhancement of testosterone and semen pro-
duction in males. The effectiveness of the various GnRH
agonists depends on many factors, including the agonist
potency, the release system, the dose, and the duration of
treatment [25]. The side effects of GnRH agonists are
generally similar to those associated with removal of the
gonads but are reversed once the treatment, often

Fig. 1. Number of biennial publications containing the defined search terms
on fertility inhibitors for dogs.
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delivered as an implant, is suspended. In dogs, GnRH ago-
nists may cause abortion [33,40]. Among GnRH agonists,
deslorelin (Suprelorin, Virbac), administered as an implant,
induced 1 to 2 year contraception in cats and other felids,
wild dogs, and tammar wallabies [27,41–43]. In dogs,
deslorelin postponed estrus in females for up to 27 months,
and the duration of efficacy did not depend on the stage of
the estrous cycle of the animal when treated [44]. In males,
the suppression of reproduction was dose-related: dogs
that received >0.3 mg/kg body weight of deslorelin were
infertile for at least 12 months and spermatogenesis was
suppressed for more than a year in 14 of 16 dogs admin-
istered deslorelin [44]. In both sexes, fertility resumed after
the implants were removed [44]. Suprelorin is registered
for use in male dogs in Australia and Europe; in Europe, the
cost of a single 9.4-mg implant to veterinarians is US$ 100
(M. Brash, personal communication).

The GnRH agonist azagly-nafarelin (Gonazon, Intervet
International B.V.), administered as an implant, induced at
least 1-year reversible contraception in female dogs and
suppressed estrus for 18 months in 92% of bitches given a
second implant [45]. Gonazon prevented puberty in young
female dogs for at least 1 year, and suppressed estrus in cats
for at least 24 months with no side effects observed [45]. In
81% of male dogs, Gonazon implants induced a 96%
decrease in the concentration of testosterone for at least 6
months. In parallel, a reduction of aggressive behavior was
observed in 62% of the treated dogs older than 6 years and
in 73% of the treated dogs younger than 3 years [23].
Gonazon received regulatory approval in the EU in 2006,
but the company never brought it to market.

3.2. Immunocontraceptives

Immunocontraceptive vaccines act by inducing anti-
body production against proteins or hormones essential for
reproduction and thus preventing conception. The immu-
nocontraceptives most commonly used for wildlife are
GnRH-based vaccines and ZP-based vaccines. GnRH vac-
cines target GnRH, thus ultimately preventing ovulation
and spermatogenesis; ZP-based vaccines inhibit egg–
sperm binding and fertilization. The effectiveness and
longevity of immunocontraceptive vaccines, as well the
incidence and severity of side effects, depend on many
factors that include sex, age, and species as well as active
ingredients, formulation, and dose of the vaccine and of the
adjuvant [20,46]. ZP-based vaccines have been used
to inhibit reproduction in rodents, ungulates, carnivores,
elephants, and marsupials [20,47]. For instance, a single
injection of the ZP vaccine SpayVac (ImmunoVaccine
Technologies) induced infertility in white-tailed deer and
horses for up to 4 years [46,48]. Although early trials in
dogs were promising [49], ZP-based vaccines did not
induce infertility in cats [50] and dogs [51]. Conflicting
findings between studies might be due to differences in the
methods used to obtain ZP, vaccine formulation, type of
adjuvant employed, and to differences in vaccination
schedule [24,47]. ZP-based vaccines prevent fertilization
but do not affect ovulation; thus, treated animals exhibit
estrus, and in some species cycle more frequently than
untreated individuals [52,53].

GnRH-based immunocontraceptive vaccines stimulate
the production of antibodies that bind to circulating GnRH,
thus preventing the release of LH and FSH. Several GnRH-
based immunocontraceptive vaccines have been devel-
oped and tested onmany species of mammals. Themajority
of thesevaccineshavebeendesigned fordelivery inmultiple
doses to livestock and companion animals [20]. Single-dose
GnRH-based vaccines, specifically developed for wildlife,
have more potential for use in managing dog populations.
One of these vaccines, GonaCon, recently registered in the
United States as a contraceptive for white-tailed deer,
horses, and feral donkeys, induced infertility in wild boar
(Sus scrofa), cats, dogs, horses (Equus caballus), bison (Bison
bison), and ground squirrels (Spermophilus beecheyi) for at
least 1 to 6 years after a single injection [48,54–56]. In cats,
GonaCon induced infertility for 1 year in 93% of the 15 fe-
males treated with a single dose; in years 2, 3, and 4
following injection, reproduction was suppressed in 73%,
53%, and 40% of females, respectively [57]. In dogs, no data
are available on the duration of induced infertility. In all
species, GonaConprevents ovulation and treated females do
not exhibit estrous behavior [56,57]. The lack of estrous
behavior prevents females from attracting males andmight
result in reduced diseases transmission or bite rates. For
instance, in brushtail possums (Trichosurus vulpecula), the
transmission coefficient of leptospirosis was 28% higher in
populations subjected to tubal ligation,where animalswere
hormonally competent and cycling, than in control pop-
ulations [58]. Similarly, gonadectomy, which has the same
effect of GonaCon decreased the leptospirosis transmission
rate by 63% to 88% in sterilized female and male possums
compared with animals in nonsterilized populations [59].

Although in most species GonaCon has no side effects,
in others it caused a granuloma (thickened tissue filled
with fluid) at the injection site. Two years after vaccina-
tion, six of 15 cats had a palpable, nonpainful injection site
granuloma [57]. Dogs treated with GonaCon showed
sterile abscesses and draining tracts at the injection site
relatively soon after injection [60]. Following these find-
ings, a new formulation of GonaCon was produced: the
results from a pilot study conducted on captive dogs in
Mexico with the new formulation showed no abscess at
injection site [61]. Combined rabies and GnRH vaccines
have potential for dog rabies control, although the effect
and long-term efficacy remain to be tested in dogs [16,62].
GonaCon is not currently commercially available for dogs.
However, the US Department of Agriculture Animal and
Plant Health Inspection Service is actively seeking a
licensing and manufacturing partner (J. Eiseman, personal
communication).

3.3. Chemosterilants

Several drugs have been developed for the sterilization
of male dogs. In particular, intrastesticular sterilants have
been studied for more than five decades; these are injected
in the testes, epididymis, or vas deferens and cause lack of
sperm in semen and thus infertility.

Zinc gluconate neutralized by arginine (Neutersol,
Addison Biological Laboratory Inc.) was approved in 2003
by the US Food and Drug Administration for chemical

G. Massei, L.A. Miller / Theriogenology 80 (2013) 829–838832



sterilization of male puppies. Injected into the testicles, this
chemical causes sclerosis of the testes and sterility.

Neutersol induced sterilization in 99.6% of the 223 male
puppies aged 3 to 10 months [63]. Although the treatment
with this chemical does not require general anesthesia,
sedation is recommended to prevent movements of the
dog during injection. Correct injection techniquewas found
critical for the safe use of Neutersol in order to avoid ul-
ceration of the scrotum and painful swelling of the testes.
Unlike surgical castration, Neutersol does not involve
removal of the testicles so that testosterone is not
completely eliminated [28]. In a study carried out in the
Galapagos, severe injection-site reactions occurred in 3.9%
of the 103 dogs treated with zinc gluconate; basal testos-
terone concentration in treated dogs decreased initially but
was similar to untreated dogs 2 years after treatment [15].
Thus, secondary male characteristics such as roaming,
marking, aggression, or mounting may be displayed.

Zinc gluconate is currently available in Mexico,
Colombia, Bolivia, and Panama as Esterilsol and in the
United States as Zeuterin (both through Ark Sciences, New
York). The cost of Esterisol is about US$15 per dog (medium
size) [22]. A similar formulation has regulatory approval in
Brazil as Infertile (Rhobifarma Indústria Farmacêutica). A
study carried out with Esterilsol in Mexico found that this
compound induced azoospermia (absence of sperm) or
aspermia (absence of semen) in 52 of the 53 dogs admin-
istered a single dose per testis [64]. Ulcers related to poor
injection technique occurred at the injection site in 2.6% of
the dogs; however, their incidence decreased when proper
injection technique, such as using new needles for each
injection, were employed. A similar study conducted in
Brazil [18] in dogs concluded that zinc gluconate could be
regarded as a permanent sterilant with no observed sign of
behavioral alteration or severe discomfort following intra-
testicular injection.

Calcium chloride (CaCl2), delivered as intratesticular in-
jection, is being researched as a sterilant for dogs. CaCl2
caused atrophy of the seminiferous tubules and decreased
testosterone concentration and sperm count in a dose-
dependent manner [65]. Although CaCl2 did not affect
dogs’ food intake, chronic stress, or blood parameters,
swelling of the testicles persisted for 3 weeks following in-
jection and the behavior of the animals returned to normal
(although no definition of normal was provided) a month
after treatment [65]. More studies are ongoing to stan-
dardize and validate formulation, dosage, and administra-
tion protocol for CaCl2 [22]. The low cost, ease of use, and
cultural acceptance of a sterilization method that does not
require removal of the testesmakemale sterilants avaluable
tool for large-scale sterilization campaigns, particularly in
areas lacking clinical facilities or skilled staff [15,18,28].

3.4. Novel fertility control inhibitors

A wide spectrum of technologies, ranging from recom-
binant vaccines to fusion proteins, has been used in various
animal species to develop novel immunocontraceptive
vaccines that could ultimately also be tested on dogs. For
instance, recombinant GnRH-based vaccines have been
successful in inducing infertility in male and female cats for

at least 20 months after administration of two doses (at
0 and 28 days), with no evidence of tissue or organ damage
[66]. Other technologies include attenuated recombinant
herpesviruses expressing fertility antigens to induce infer-
tility in dogs and cats, phage-GnRH constructs for immu-
nocontraception of dogs, novel toxin conjugates for
sterilization via gonadotroph ablation, bacterial ghosts, and
virus-like-particles [22,51,67,68].

4. Do ownership status and confinement of dogs
affect the type of contraceptives and sterilants used?
Considerations for field applications

In most countries, a dog population is composed of
animals belonging to all categories, ranging from the two
extremes of confined dogs to roaming, ownerless animals.
These categories are not fixed, as confined dogs can become
roaming dogs and ownerless dogs can be adopted or cared
for by one or more person in the community [2,14]. The
management of a local population of dogs through fertility
control must take into account important differences
between dog categories such as natality, mortality, and
accessibility. Other differences, such as owner and public
expectations on the duration of infertility, the costs of
sterilization, and the responsibilities for meeting these
costs, will influence the choice of contraceptives and/or
sterilants (Table 1).

For confined dogs, the ultimate decision regarding
sterilization rests with the owner; for free-roaming dogs,
the decision rest with the community or evenwith regional
or government authorities committed to decrease the
impact of dogs on society. The choice of appropriate fertility
inhibitors thus shifts from personal preferences and beliefs

Table 1
Differences in dog categories, defined through dog confinement and
ownership status, likely to affect the type of contraceptives or sterilants
used on dogs.

Confined dogs Free-roaming dogs

Decision to use fertility
inhibitors rests with owner

Decision to use fertility
inhibitors rests with wider
community

Most are accessible Some not accessible
Confined after treatment Mix with other dogs after

treatment
Longer lifespan, often better

health
Shorter lifespan, often poorer
health

Reproduction planned Free to reproduce, may be
pregnant when treated with
fertility inhibitor

Sterilized to prevent
reproduction or sex-related
behavior, improve health,
and reduce disease risk for
the dog

Sterilized to decrease
population size and control
diseases

Cost of sterilization met by
owner

Cost of sterilization rarely met
by owner

No or very few side effects of
contraceptive acceptable by
owner on individual dog

Some side effects of
contraceptive acceptable for
population

Contraceptives expected 100%
effective

Contraceptives not expected
100% effective

Duration of infertility expected
to be predictable

Duration of infertility may vary
and is evaluated on populations

The statements are relative and not absolute for each dog category.
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to considerations for a wider context. Confined dogs are, by
definition, accessible at all times, unlike free-roaming ani-
mals, although not all owners of confined dogs are willing
to have their dogs sterilized [14,15,18]. For instance, in Sri
Lanka, 65% of the dog owners offered free contraceptives
for dogs accepted this method against 18% that were
opposed and 17% that were undecided [13]; in Samoa, 49%
of dog owners believed sterilization affected dogs’ ability to
guard [6].

For free-roaming animals, accessibility varies widely
and depends on the proportion of individually and
community-owned dogs versus the proportion of own-
erless dogs.

Continuous access means a dog can be administered
multiple doses of a fertility control drug at precise intervals,
treatment can be discontinued at any time, and possible
side effects can be monitored and treated if necessary.
Confinement of dogs is also important for those contra-
ceptives that induce initial ovulation, such as GnRH
agonists, or that may cause more frequent cycling such as
PZ-based vaccines. Although some confined dogs are kept
on a chain in open yards, most confined dogs are kept in-
doors, with no access to conspecifics. Conversely, roaming
dogs treated with ovulation-inducing contraceptives will
attract other dogs, potentially increasing risk disease
transmission and bite rates.

Confined dogs generally have a relatively long lifespan;
conversely, roaming dogs in many parts of the world do not
live beyond 2 or 3 years because of malnutrition, diseases,
and poor health [69,70]. As population turnover of roaming
dogs is fast because of high mortality rates, a fertility in-
hibitor that prevents reproduction for 2 to 3 years is likely
to cover the entire lifespan of most animals. Studies in
wildlife species indicated that imposed infertility can in-
crease lifespan and improve health, possibly because of the
reduced costs of maternal investment [71,72,73]. If this was
proven in dogs, more long-acting contraceptives or per-
manent sterilants would be required to counteract the
infertility-induced increase in survival.

Owners of confined dogs are generally aware of the
reproductive status of their animals so that treatment
during pregnancy can be avoided. Conversely, free-roaming
dogs may be pregnant when administered fertility in-
hibitors. Drugs thatmight induce abortion are thus safer for
confined dogs.

Confined dogs are sterilized for preventing reproduction
but also for suppressing male sexual behavior such as
spraying and roaming and for treating medical conditions
such as prostatic hyperplasia and mammary tumors
[22,23]. Ownerless dogs, as well as many owned roaming
dogs, are sterilized during mass campaigns aimed at
reducing population size and growth, and at eliminating
dog-borne diseases [74,75]. For free-roaming dogs, the
costs of surgical sterilization are met by local nongovern-
mental agencies or public authorities, often as part of mass
disease-elimination campaigns. However, the cost of sur-
gical sterilization may prevent these campaigns from being
successful [6,76]. Mass vaccination and sterilization cam-
paigns aim at reaching thousands or even hundreds of
thousands of dogs: if fertility inhibitors are used as alter-
native to surgical sterilization, the cost of these drugs must

be lower than the cost of surgical sterilization, for such a
program to be cost-effective [16]. Individual owners are
relatively more likely to afford the cost of more expensive
contraceptives such as implants of GnRH agonists. For
instance, a study conducted in Cambodia [77] found that in
urban and periurban areas, 96% of dog owners were willing
to pay for rabies vaccination. In this context, it is possible
that, if the cost of sterilization was similar to that of rabies
vaccination, owners would be willing to sustain both.
However, owners often quote affordability as one of the
reasons against sterilization [14]. For instance, in Samoa,
52% dog owners offered surgical sterilization at cost-
recovery rates of US$ 20 to 40 per dog, quoted cost as a
major issue when deciding whether to sterilize dogs [6]. In
such context, the proportion of dogs sterilized would in-
crease if fertility inhibitors cheaper than of US$ 20 to 40
were available.

Owners that are willing to pay for nonsurgical contra-
ception are likely to expect that the drugs have no side
effects, are fully effective, and have a predictable duration
so that fertility can be resumed once the contraceptive is
removed. Owners are also less likely to tolerate side effects,
particularly if the probability of their dog to experience
these side effects is unknown.

At population level, the incidence and severity of side
effects of any fertility inhibitor should be compared with
alternative options [26]. For instance, the probability that a
small proportion of animals are likely to experience a
temporary discomfort in the injection site, as might be the
case for male chemosterilants or immunocontraceptives,
should be compared with the incidence of complications
associated with surgery. In a wider context, the probability
and severity of side effects induced by fertility inhibitors
should be considered in relation to a mass campaign’s po-
tential impact on diseases such as rabies.

Besides differences between dogs, social and cultural
difference must be taken into account when considering
both surgical and nonsurgical fertility control to manage
dog populations. For instance, in Samoa, 28% opposed dog
sterilization that was perceived to cause laziness, health
problems, and reduce dogs’ ability to guard; 46% felt that
bitches should either have a litter or go through estrus at
least once [6]. In Thailand, 75% of caretakers of free-
roaming dogs said that dog sterilization (not specified
whether surgical or nonsurgical) is not consistent with
their religious beliefs [14]. Informed decisions on dog
population management should be taken by weighing ad-
vantages and disadvantages of each fertility inhibitor
against what is socially and culturally acceptable.

5. Conclusions and recommendations

The use of fertility inhibitors is gaining acceptance to
control populations of companion animals and wildlife
[19,21,24]. For dog population management, nonsurgical
sterilization is increasingly advocated as deserving priority
for development because of its potential to be more cost-
effective than surgical sterilization [15,21,22,78]. The ben-
efits of using sterilization (both surgical and nonsurgical)
alongside vaccination to manage dog populations include
the reduction in population turnover, which also results in
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the population maintaining herd immunity, improved
health, potential reduction of bite rate, and increased owner
compliance as owners bring their dogs to sterilization cen-
ters [4,26,74]. If sterilizationwas proven to decrease contact
rate and if the latter was directly associated with disease
transmission, as found in other species, sterilization would
also decrease diseases transmission [58]. Clearly, more
research is warranted in this area. In parallel, more studies
should assess whether a decrease in dog density is associ-
ated with a decrease in bite rates, attacks on livestock, and
road traffic accidents.

This review indicated that the past decade saw a sig-
nificant increase in studies concerning fertility inhibitors
for dogs. Despite the fact that several studies mentioned
that these drugs could be used to decrease dog population
size and impact, very few analyzed how differences in

reproduction, survival, and accessibility of dogs, as well as
costs and societal expectations, might affect the type of
fertility inhibitors to be used in dog population
management.

This review further explored these differences and their
relevance for mass dog sterilizations aimed at reducing dog
numbers ordog impact suchbite rates ordiseases. To beused
in roaming dogs during mass sterilizations campaigns,
fertility inhibitors should 1) be effective when administered
in one dose or in booster doses, the latter delivered in
conjunction with other drugs such as rabies vaccines; 2)
render themajorityof animals infertile for 1 ormoreyears; 3)
have zero or acceptable side effects, with known incidence
and severity; 4) be safe for administration during pregnancy;
5) be relatively inexpensive, particularly in comparison to
surgical sterilization; 6) inhibit female reproduction, but
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Fig. 2. Decision tree and criteria to evaluate the use of nonsurgical fertility control in dog population management. The decision tree assumes that fertility control
has been selected as the best option, among others available, for managing dog populations.
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ideally prevent reproduction in both sexes; and 7) be stable
under a wide range of field conditions.

The overview of fertility inhibitors commercially avail-
able or widely tested in other animal species suggested that
some meet most of the above criteria and therefore have
potential for large dog sterilization campaigns. For
instance, immunocontraceptives and male sterilants
deserve further attention for dog population management.
Although females are the primary target to manage pop-
ulations through fertility control, male sterilants could also
be employed, particularly if less expensive or with longer
effectiveness than those used on females. The review
indicated that contraceptives such as synthetic progestins
and GnRH agonists are more likely to remain limited to
confined dogs, partly because of costs, but also because of
the induction of ovulation that, in roaming dogs, might
cause an initial increase of contact rate with potential
increased risk of disease transmission. The review also
showed the relative lack of knowledge on the impact of
fertility inhibitors on behavior and on sexually immature
versus pubertal dogs and suggested that more work is
required in this area.

Besides the effects of fertility inhibitors on individual
animals, the impact of fertility control to manage dog
populations have been rarely measured. Notable excep-
tions are surgical sterilization campaigns carried out in
India that resulted in sterilization of 62% to 86% free-
roaming dogs [75,79].

If nonsurgical fertility control is chosen to manage dog
populations or their impact, social acceptance, humaneness,
effectiveness, feasibility, costs, and sustainability of this
method should be evaluated at an early planning stage
(Fig. 2). For instance, owners of roaming dogs as well as
other stakeholders shouldbe consultedand informedon the
possible benefits of fertility control. Once verified that dogs
are locally considered as overabundant, the decision tree in
Figure 2 could be used for the steps that must be taken
before launching a mass sterilization campaign. This
framework is based on the assumption that a set reduction
of dogpopulation size, or the eliminationof adisease suchas
rabies, within a predefined timeframe can be achieved by
using nonsurgical fertility control as an additional tool to
education and vaccination. If fertility control is regarded as a
socially acceptable option for dog population management,
the welfare (i.e., side effects), long-term effectiveness, and
effects of fertility inhibitors used must be carefully evalu-
ated. Decisions should be based on available data or on pilot
trials with dogs that are regularly monitored and have ac-
cess to veterinary care.

Knowledge of the local dog population dynamics can be
based on household surveys carried out in conjunction
with estimates of roaming dogs and on data collected on
natality and survival of the different categories of dogs. The
latter can be used tomodel the impact of fertility control on
population dynamics. In wildlife management, models are
increasingly used to investigate the effects of contraception
on population size [80–83]; these models could be adapted
for dog management.

Legal requirement on the import and use of a particular
drug should be considered, unless the drug is already
licensed for use on dogs in that country [19]. Legal

requirements vary widely between countries: if a drug is
not available in a particular country, it might take months
or years before the authorities approve its use. In parallel,
the whole feasibility of the campaign must be carefully
evaluated. This concerns the practicalities of delivering
fertility inhibitors to a sufficient proportion of dogs, the
actual cost of fertility inhibitors, staff, vehicles, and con-
sumables as well as the sustainability of the campaign.
“Sustainability” can be defined as the ability of achieving
the aim of the campaign (e.g., a set reduction of dog
numbers, dog bites or traffic incidents, elimination of a
disease) within a set time, resources, and budget. The
campaign can start only once all these steps have been
carefully considered.

The development of safe and effective fertility inhibitors
for dogs discussed in this review must also be matched by
evidence that nonsurgical fertility control is an efficient,
humane, and socially acceptable alternative to surgical
sterilization for managing overabundant populations of
dogs and their impact on human interests. Understanding
how different dog categories require different fertility in-
hibitors is only one of themany steps that will lead to large-
scale applications of these methods. Integrating fertility
control with vaccination and public education programs,
registering new drugs for dogs, and evaluating the feasi-
bility, effectiveness, sustainability, and impact of mass
nonsurgical sterilization campaigns are the main chal-
lenges for the future of dog population management.

Acknowledgments

The authors thank Kathleen Fagerstone, Amy Fisher, and
Joyce Briggs for their comments and suggestions that
increased the clarity and focus of the manuscript and Doug
Eckery and John Eisemann for technical advice.

References

[1] Hughes J, Macdonald DW. A review of the interactions between
free-roaming domestic dogs and wildlife. Biol Conserv 2013;157:
341–51.

[2] International Companion Animal Management Coalition. 2007.
Humane dog population management guidance. http://icam-
coalition.org/ Accessed October 23, 2012.

[3] Macpherson CNL, Meslin FX, Wandeler AI. Dogs, zoonoses and
public health. Second edition. Wallingford, UK: CABI International;
2013.

[4] Jackman J, Rowan A. Free-roaming dogs in developing countries: the
public health and animal welfare benefits of capture, neuter, and
return programs. In: Salem D, Rowan A, editors. State of the animals.
Washington DC: Humane Society Press; 2007. p. 55–78.

[5] Rosado B, García-Belenguer S, León M, Palacio J. A comprehensive
study of dog bites in Spain, 1995-2004. Vet J 2009;179:383–91.

[6] Farnworth MJ, Blaszak KA, Hiby EF, Waran NK. Incidence of dog
bites and public attitudes towards dog care and management in
Samoa. Anim Welfare 2012;21:477–8.

[7] Beck AM. The human-dog relationship: a tale of two species. In:
Macpherson CNL, Meslin FX, Wandeler AI, editors. Dogs, zoonoses
and public health. Wallingford, UK: CABI International; 2013. p.
1–12.

[8] Sudarshan MK, Mahendra BJ, Narayan DH. A community survey of
dog bites, anti-rabies treatment, rabies and dog population man-
agement in Bangalore city. J Comm Dis 2001;33:245–51.

[9] Knobel DL, Cleaveland S, Coleman PG, Fèvre EM, Meltzer MI,
Miranda ME, et al. Re-evaluating the burden of rabies in Africa and
Asia. Bull WHO 2005;83:360–8.

G. Massei, L.A. Miller / Theriogenology 80 (2013) 829–838836

http://icam-coalition.org/
http://icam-coalition.org/


[10] Young JK, Olson KA, Reading RP, Amgalanbaatar S, Berger J. Is
wildlife going to the dogs? The impact of feral and free-roaming
dogs on wildlife populations. BioScience 2011;61:125–32.

[11] Hiby E. Dog population management. In: Macpherson CNL,
Meslin FX, Wandeler AI, editors. Dogs, zoonoses and public health.
Wallingford, UK: CABI International; 2013. p. 177–204.

[12] Lembo T, Craig PS, Miles MA, Hampson KR, Meslin F-X. Zoonoses
prevention control and elimination in dogs. In: Macpherson CNL,
Meslin FX, Wandeler AI, editors. Dogs, zoonoses and public health.
Wallingford, UK: CABI International; 2013. p. 205–258.

[13] Matibag GC, Ohbayashi Y, Kanda K, Yamashina H, Kumara B, Gamini
Perera IN, et al. A pilot study on the usefulness of information and
education campaign materials in enhancing the knowledge, attitude
and practice on rabies in rural Sri Lanka. J Infect Developing
Countries 2009;3:55–64.

[14] Toukhsati SR, Phillips CJC, Podberscek AL, Coleman GJ. Semi-
ownership and sterilisation of cats and dogs in Thailand. Animals
2012;2:611–27.

[15] Levy JK, Crawford PC, Appel LD, Clifford EL. Comparison of intra-
testicular injection of zinc gluconate versus surgical castration to
sterilize male dogs. Am J Vet Res 2008;69:140–3.

[16] MasseiG,Miller LA, KillianGJ. Immunocontraception to control rabies
in dog populations. Human-Wildlife Interactions 2010;4:155–7.

[17] Massei G. Catch, inject and release: immunocontraception as an
alternative to culling and surgical sterilization to control rabies in
free-roaming dogs. In: Fooks AR, Müller T, editors. Rabies con-
troldtowards sustainable prevention at the source. Compendium of
the OIE Global Conference on Rabies Control, Incheon, 2012. Paris,
France: OIE Publishing; 2013. p. 181–7.

[18] Soto FR, Viana WG, Mucciolo GC, Hosomi FY, Vannucchi CI,
Mazzei CP, et al. Evaluation of efficacy and safety of zinc gluconate
associated with dimethyl sulphoxide for sexually mature canine
males chemical neutering. Reprod Dom Anim 2009;44:927–31.

[19] Fagerstone KA, Miller LA, Killian GJ, Yoder CA. Review of issues
concerning the use of reproductive inhibitors, with particular
emphasis on resolving human-wildlife conflicts in North America.
Integrat Zool 2010;5:15–30.

[20] McLaughlin EA, Aitken RJ. Is there a role for immunocontraception?
Moll Cell Endocrynol 2011;335:78–88.

[21] Munks MW. Progress in development of immunocontraceptive
vaccines for permanent non-surgical sterilization of cats and dogs.
Reprod Dom Anim 2012;47:223–7.

[22] Alliance for Contraception in Cats and Dogs (ACC&D). Contraception
and fertility control in dogs and cats. E-book: 2013.

[23] Goericke-Pesch S, Wilhelm E, Ludwig C, Desmoulins PO,
Driancourt MA, Hoffmann B. Evaluation of the clinical efficacy of
Gonazon implants in the treatment of reproductive pathologies,
behavioral problems, and suppression of reproductive function in
the male dog. Theriogenology 2010;73:920–6.

[24] Levy JK. Contraceptive vaccines for the humane control of com-
munity cat populations. Am J Reprod Immunol 2011;66:63–70.

[25] Gobello C. New GnRH analogs in canine reproduction. Anim Reprod
Sci 2007;100:1–13.

[26] Massei G. Non-surgical contraception and sterilisation for dogs. In:
Macpherson CNL,Meslin FX,Wandeler AI, editors. Dogs, zoonoses and
public health. Wallingford, UK: CABI International; 2013. p. 259–70.

[27] Munson L. Contraception in felids. Theriogenology 2006;66:126–34.
[28] Kutzler M, Wood A. Non-surgical methods of contraception and

sterilization. Theriogenology 2006;66:514–25.
[29] Association of Zoos & Aquariums (AZA) Wildlife Contra-

ception Center, St Louis Zoo http://www.stlzoo.org/animals/
scienceresearch/contraceptioncenter/contraceptionrecommendatio/
contraceptionmethods. Accessed October 23, 2012.

[30] Burke TJ, Reynolds HA. Megestrol acetate for estrus postponement
in the bitch. J Am Vet Med Assoc 1975;167:285–7.

[31] Moresco A, Munson L, Gardner IA. Naturally occurring and melen-
gestrol acetate-associated reproductive tract lesions in zoo canids.
Vet Pathol 2009;46:1117–28.

[32] Asa CS, Porton IJ. Wildlife contraception: issues, methods and ap-
plications. Baltimore, MD: Johns Hopkins University Press; 2005.

[33] Brache V, Alvarez-Sanchez F, Faundes A, Tejada AS, Cochon L.
Ovarian endocrine function through five years of continuous
treatment with Norplant subdermal contraceptive implants.
Contraception 1990;41:169–77.

[34] Benfield N, Darney PD. Contraceptive implants. In: Shoupe D, editor.
Contraception. Oxford, UK: Wiley-Blackwell; 2011.

[35] Nave CD, Coulson G, Short RV, Poiani A, Shaw G, Renfree MB. Long-
term fertility control in the kangaroo and the wallaby using levo-
norgestrel implants. Reproduction 2002;60:71–80.

[36] Coulson G, Nave CD, Shaw J, Renfree MB. Long-term efficacy of le-
vonorgestrel implants for fertility control of eastern grey kangaroos
(Macropus giganteus). Wildl Res 2008;35:520–4.

[37] MiddletonD,Walters B,Menkhorst P,Wright P. Fertility control in the
koala, Phascolarctos cinereus: the impact of slow-release implants
containing levonorgestrel or oestradiol on the production of pouch
young. Wildl Res 2003;30:207–12.

[38] Wheaton CJ, Savage A, Shukla A, Neiffer D, Qu W, Sun Y, et al. The
use of long acting subcutaneous levonorgestrel (LNG) gel depot as
an effective contraceptive option for cotton-top tamarins (Saguinus
oedipus). Zoo Biol 2011;30:498–522.

[39] Baldwin CJ, Peter AT, BosuWT,Dubielzig RR. The contraceptive effects
of levonorgestrel in the domestic cat. Lab Anim Sci 1994;44:261–9.

[40] Ponglowhapan S. Clinical applications of GnRH agonist deslorelin in
dogs and cats. Thai J Vet Med Suppl 2011;41:59–63.

[41] Munson L, Bauman JE, Asa CS, Jochle W, Trigg TE. Efficacy of the
GnRH analogue deslorelin for suppression of oestrous cycles in cats.
J Reprod Fertil 2001;57:269–73.

[42] Bertschinger HJ, Trigg TE, Jöchle W, Human A. Induction of contra-
ception in some African wild carnivores by downregulation of LH
and FSH secretion using the GnRH analogue deslorelin. Reproduc-
tion 2002;60:41–2.

[43] Herbert CA, Trigg TE. Applications of GnRH in the control and
management of fertility in female animals. Anim Reprod Sci 2005;
88:141–53.

[44] Trigg TE, Wright PJ, Armour AF, Williamson PE, Junaidi A, Martin GB,
et al. Use of a GnRH analogue implant to produce reversible long-
term suppression of reproductive function in male and female do-
mestic dogs. J Reprod Fertil Suppl 2001;57:255–61.

[45] Rubion S, Desmoulins PO, Rivière-Godet E, Kinziger M, Salavert F,
Rutten F, et al. Treatment with a subcutaneous GnRH agonist con-
taining controlled release device reversibly prevents puberty in
bitches. Theriogenology 2006;66:1651–4.

[46] Miller LA, Fagerstone KA, Wagner DC, Killian GJ. Factors contrib-
uting to the success of a single-shot, multiyear PZP immunocon-
traceptive vaccine for white-tailed deer. Human–Wildlife Conflicts
2009;3:103–15.

[47] Kirkpatrick JF, Lyda RO, Frank KM. Contraceptive vaccines for
wildlife: a review. Am J Reprod Immunol 2011;66:40–50.

[48] Killian G, Thain DS, Diehl N, Rhyan J, Miller LA. Four-year contra-
ception rates of mares treated with single-injection porcine zona
pellucid and GnRH vaccines and intrauterine devices. Wildl Res
2008;35:531–9.

[49] Mahi-Brown CA, Yanagimachi R, Hoffman JC, Huang TT. Fertility
control in the bitch by active immunization with porcine zonae
pellucidae: use of different adjuvants and patterns of estradiol and
progesterone levels in estrous cycles. Biol Reprod 1985;32:761–
72.

[50] Levy JK, Mansour M, Crawford PC, Pohajdak B, Brown RG. Survey of
zona pellucida antigens for immunocontraception in cats. Ther-
iogenology 2005;62:1334–41.

[51] Gupta SK, Srinivasan VA, Suman P, Rajan S, Nagendrakumar SB,
Gupta N, et al. Contraceptive Vaccines based on the zona pellucida
glycoproteins for dogs and other wildlife population management.
Am J Reprod Immunol 2011;66:51–62.

[52] Nuñez CMV, Adelman JS. Rubenstein DI immunocontraception in
wild horses (Equus caballus) extends reproductive cycling beyond
the normal breeding season. PLoS ONE 2010;5:e13635.

[53] Gray M, Thain DS, Cameron EZ, Miller LA. Multi-year fertility
reduction in free-roaming feral horses with single-injection
immunocontraceptive formulations. Wildl Res 2010;37:475–81.

[54] Miller LA, Gionfriddo JP, Fagerstone KA, Rhyan JC, Killian GJ. The
single-shot GnRH immunocontraceptive vaccine (GonaCon�) in
white-tailed deer: comparison of several GnRH preparations. Am J
Reprod Immunol 2008;60:214–23.

[55] Massei G, Cowan DP, Coats J, Bellamy F, Quy R, Brash M, et al. Long-
term effects of immunocontraception on wild boar fertility, physi-
ology and behaviour. Wildl Res 2012;39:378–85.

[56] Massei G, Cowan DP, Coats J, Gladwell F, Lane JE, Miller LA. Effect of
the GnRH vaccine GonaConTM on the fertility, physiology and
behaviour of wild boar. Wildl Res 2008;35:1–8.

[57] Levy JK, Friary JA, Miller LA, Tucker SJ, Fagerstone KA. Long-term
fertility control in female cats with GonaCon�, a GnRH immuno-
contraceptive. Theriogenology 2011;76:1517–25.

[58] Caley P, Ramsey D. Estimating disease transmission in wildlife, with
emphasis on leptospirosis and bovine tuberculosis in possums, and
effects of fertility control. J Appl Ecol 2001;38:1362–70.

[59] Ramsey D. Effects of fertility control on behavior and disease
transmission in brushtail possums. J Wildl Manage 2007;71:109–16.

G. Massei, L.A. Miller / Theriogenology 80 (2013) 829–838 837

http://www.stlzoo.org/animals/scienceresearch/contraceptioncenter/contraceptionrecommendatio/contraceptionmethods
http://www.stlzoo.org/animals/scienceresearch/contraceptioncenter/contraceptionrecommendatio/contraceptionmethods
http://www.stlzoo.org/animals/scienceresearch/contraceptioncenter/contraceptionrecommendatio/contraceptionmethods


[60] Griffin B, Baker H, Welles E, Miller LA, Fagerstone KA. Response of
dogs to a GnRH-KLH conjugate contraceptive vaccine adjuvanted
with Adjuvac�. In: Proceedings of the 2nd ACC&D International
Symposium on Nonsurgical Methods for Pet Population Control;
2004. http://www.acc-d.org/ACCD%20Symposia Accessed 23
October 2012.

[61] Vargas-Pino F, Gutiérrez-Cedillo V, Canales-Vargas EJ, Jorge F,
Fuentes I, Gress-Ortega LR, et al. Concomitant administration of
GonaCon� and rabies vaccine in female dogs (Canis familiaris) in
Mexico. Vaccine 2013;July 16.

[62] Wu X, Franka R, Svoboda P, Pohl J, Rupprecht CE. Development of
combined vaccines for rabies and immunocontraception. Vaccine
2009;27:7202–9.

[63] Wang M. Neutersol: intratesticular injection induces sterility
in dogs. In: Proceedings of the 1st ACC&D International Sympo-
sium on Non-Surgical Methods of Pet Population Control; 2002.
http://www.acc-d.org/ACCD%20Symposia Accessed 23 October
2012.

[64] Esquivel LaCroix C. Evaluation of a single intratesticular injection of
zinc gluconate neutralized by Arginine (Neutersol�) as a chemical
sterilant in sexually mature, male dogs. In: Proceedings of the 3rd
ACC&D International Symposium on Non-surgical contraceptive
methods for Pet Population Control; 2006. http://www.acc-d.org/
ACCD%20Symposia Accessed 23 October 2012.

[65] Jana K, Samanta PK. Sterilization of male stray dogs with a single
intratesticular injection of calcium chloride: a dose-dependent
study. Contraception 2007;75:390–400.

[66] Robbins SC, Jelinski MD, Stotish RL. Assessment of the immuno-
logical and biological efficacy of two different doses of a recombi-
nant GnRH vaccine in domestic male and female cats (Felis catus). J
Reprod Immunol 2004;64:107–19.

[67] Cui X, Duckworth JA, Lubitz P, Molinia FC, Haller C, Lubitz W, et al.
Humoral immune responses in brushtail possums (Trichosurus vul-
pecula) induced by bacterial ghosts expressing possum zona pellu-
cida 3 protein. Vaccine 2010;28:4268–74.

[68] Cross ML, Zheng T, Duckworth JA, Cowan PE. Could recombinant
technology facilitate the realisation of a fertility-control vaccine for
possums? NZ J Zool 2011;38:91–111.

[69] Reece JF, Chawla SK, Hiby EF, Hiby LR. Fecundity and longevity of
roaming dogs in Jaipur, India. BMC Vet Res 2008;4:1–7.

[70] Hampson K, Dushoff J, Cleaveland S, Haydon DT, Kaare M,
Packer C, et al. Transmission dynamics and prospects for the

elimination of canine rabies, 2009 transmission dynamics and
prospects for the elimination of canine rabies. PLoS Biol 2009;7:
e1000053.

[71] Twigg LE, Lowe TJ, Martin GR, Wheeler AG, Gray GS, Griffin SL, et al.
Effects of surgically imposed sterility on free-ranging rabbit pop-
ulations. J Appl Ecol 2000;37:16–39.

[72] Turner A, Kirkpatrick JF. Effects of immunocontraception on popu-
lation, longevity and body condition in wild mares Equus caballus.
Reprod Suppl 2002;60:187–95.

[73] Kirkpatrick JF, Turner A. Achieving population goals in long-lived
wildlife with contraception. Wildl Res 2008;35:513–9.

[74] Hiby E. Understanding the need: dog and cat reproduction con-
trol around the world. In: 4th ACC&D International Symposium
on Non-Surgical Contraceptive Methods of Pet Population Control;
2010. http://www.acc-d.org/ACCD%20Symposia Accessed 23rd
October 2012.

[75] Totton SC, Wandeler AI, Zinsstag J, Bauch CT, Ribble CS, Rosatte RC,
et al. Stray dog population demographics in Jodhpur, India following
a population control/rabies vaccination program. Prev Vet Med
2010;97:51–77.

[76] Kasempimolporn S. Moving towards the elimination of rabies in
Thailand. J Med Assoc Thai 2008;3:433–7.

[77] Lunney M, Fèvre JS, Stiles E, Ly S, San S, Vong S. Knowledge, attitudes
and practices of rabies prevention and dog bite injuries in urban and
peri-urban provinces in Cambodia. Int Health 2009;4:4–9.

[78] Carroll MJ, Singer A, Smith GC, Cowan DP, Massei G. The use of
immuno-contraception to improve rabies eradication in urban dog
populations. Wildl Res 2010;37:676–87.

[79] Reece JF, Chawla SK. Control of rabies in Jaipur, India, by the steri-
lisation and vaccination of neighbourhood dogs. Vet Rec 2006;159:
379–83.

[80] Rutberg AT, Naugle RE. Population effects of immunocontraception
in white-tailed deer Odocoileus virginianus. Wildl Res 2008;35:
494–501.

[81] Druce HC, Mackey RL, Slowtow R. How immunocontraception can
contribute to elephant management in small, enclosed reserves:
Munyawana population. PLoS one 2011;6:1–10.

[82] Hobbs NT, Bowden DC, Baker DL. Effects of fertility control on
populations of ungulates: General, stage-structured models. J Wild
Manage 2000;64:473–91.

[83] Kirkpatrick JF, Turner A. Achieving population goals in long-lived
wildlife with contraception. Wildl Res 2008;35:513–9.

G. Massei, L.A. Miller / Theriogenology 80 (2013) 829–838838

http://www.acc-d.org/ACCD%2520Symposia
http://www.acc-d.org/ACCD%2520Symposia
http://www.acc-d.org/ACCD%2520Symposia
http://www.acc-d.org/ACCD%2520Symposia
http://www.acc-d.org/ACCD%2520Symposia

	Nonsurgical fertility control for managing free-roaming dog populations: A review of products and criteria for field applications
	

	Nonsurgical fertility control for managing free-roaming dog populations: A review of products and criteria for field applic ...
	1 Introduction
	2 Trends in numbers of scientific publications on nonsurgical sterilization for dogs
	3 Contraceptives and sterilants
	3.1 Hormonal methods
	3.2 Immunocontraceptives
	3.3 Chemosterilants
	3.4 Novel fertility control inhibitors

	4 Do ownership status and confinement of dogs affect the type of contraceptives and sterilants used? Considerations for fie ...
	5 Conclusions and recommendations
	Acknowledgments
	References


	Text6:     This article is a U.S. government work, and is not subject to copyright in the United States.


