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İ. Esra Büyüktahtakın1 · Robert G. Haight2

Published online: 28 October 2017
© Springer Science+Business Media, LLC 2017

Abstract Invasive species are a major threat to the economy, the environment, health, and
thus human well-being. The international community, including the United Nations’ Global
Invasive Species Program (GISP), National Invasive Species Council (NISC), and Center
for Invasive Species Management (CISM), has called for a rapid control of invaders in
order to minimize their adverse impacts. The effective management of invasive species is
a highly complex problem requiring the development of decision tools that help managers
prioritize actions most efficiently by considering corresponding bio-economic costs, impacts
on ecosystems, and benefits of control. Operations research methods, such as mathemati-
cal programming models, are powerful tools for evaluating different management strategies
and providing optimal decisions for allocating limited resources to control invaders. In this
paper, we summarize the mathematical models applied to optimize invasive species preven-
tion, surveillance, and control. We first define key concepts in invasive species management
(ISM) in a framework that characterizes biological invasions, associated economic and envi-
ronmental costs, and their management. We then present a spatio-temporal optimization
model that illustrates various biological and economic aspects of an ISM problem. Next, we
classify the relevant literature with respect to modeling methods: optimal control, stochastic
dynamic programming, linear programming, mixed-integer programming, simulation mod-
els, and others. We further classify the ISMmodels with respect to the solution method used,
their focus and objectives, and the specific application considered. We discuss limitations of
the existing research and provide several directions for further research in optimizing ISM
planning. Our review highlights the fact that operations research could play a key role in
ISM and environmental decision-making, in particular closing the gap between the decision-
support needs of managers and the decision-making tools currently available to management.
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1 Introduction

Invasive species have become a global hazard to the environment, society, and the economy—
threatening biodiversity and increasing environmental degradation (Wilcove et al. 1998;
Levine et al. 2003); increasing health problems and jeopardizing life, property, and safety due
to increased fire risks (Bowers et al. 2006; McDonald and McPherson 2013); and reducing
the value of agricultural products and costing U.S. taxpayers billions of dollars annually
(Pimentel et al. 2005). The National Invasive Species Council (NISC) stresses the importance
of rapid response to controlling new invasions before they spread (NISC 2001).

An invasive species is a species defined as follows: “(1) that is non-native to the ecosys-
tem under consideration and (2) whose introduction causes or is likely to cause economic or
environmental harm or harm to human health” (Executive Order 13112; U.S. Department of
Interiror 1999). Examples of invasive species that have severe impacts on native ecosystems
costing billions of dollars each year include the emerald ash borer (Agrilus planipennis Fair-
maire) (EAB), zebra mussel (Dreissena), and Burmese python (Python bivittatus). Invaders
also spread disease that can be devastating to human health (e.g., the Asian tiger mosquito
can lead to more than 20 diseases, including yellow fever and malaria) (Juliano and Philip
Lounibos 2005), and some threaten human safety (e.g., deer-vehicle collisions) (Austin et al.
2009; Dolman and Wäber 2008) and food security (Pejchar and Mooney 2009), and reduce
land andwater recreational opportunities (SouthernArizonaBuffelgrass CoordinationCenter
2011). Consequently, their effective control is critical for the well-being of people (Pejchar
and Mooney 2009).

Controlling invasive species over a spatial scale and extended periods of time is a funda-
mental and challenging problem. Each invasive species shows distinct population dynamics,
such as varying growth and dispersal rates, and has different impacts on the ecosystem. A
spatially explicit representation of the problem is essential because functions of ecosystems
and the growth and dispersal of the invasive species are spatial in nature. Furthermore, inva-
sive species spread over time in unpredictable ways due to the variability of human vectors
of transport and environmental factors.

Management of invasive species involves prevention, surveillance, and control strategies.
While control strategies focus on the removal of an invasive population, prevention strategies,
such as quarantine and inspection, can avoid the introduction of new invasions at the onset, and
surveillance increases the chance of early detection, thus improving the chance of successful
eradication (Rejmánek and Pitcairn 2002; Rout et al. 2011). However, resources formanaging
invaders (e.g., funding, labor, rapid-response teams, volunteer groups) are usually limited.
Given different biological properties, the invasive species management (ISM) problem can
be defined as the problem of determining how to allocate limited resources among different
management efforts (prevention, surveillance, and control) over space and time, with the
management objective of minimizing economic and environmental damage from invasive
species as well as the cost of management. ISM is a resource allocation problem, which is
shown to be NP-complete in the strong sense (Kellerer et al. 2004).

The intricacy of the ISM problem requires the development of bio-economic models that
help managers decide on the most efficient management strategies by jointly considering the
biological features of population dynamics and the economic costs and benefits (Born et al.
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2005; Buhle et al. 2005; Dana et al. 2014; Perrings et al. 2000; Pimentel 2011). Operations
research (OR)methods, such as mathematical programming (MP)models, are powerful tools
for evaluating different intervention strategies and providing optimal decisions for allocating
limited resources to control invaders. Thus, OR could play a key role in the field of ISM
planning, in addition to its important role in the fields of transportation, energy, telecommu-
nications, and manufacturing. In particular, the improved solvability of optimization models
with efficient algorithms and software makes OR a strong alternative to simpler ecological
models and simulation methods.

The relevant papers in the literature are spread across a broad range of disciplines, such
as ecology, biological conservation, environmental management, forestry, and resource eco-
nomics. While OR models have been widely used as a tool to study the ISM problem in
various disciplines, there is no evaluative review of those models from an OR perspective,
identifying the current state-of-the art and presenting related research needs and directions.
Our review paper closes this research gap by synthesizing the disparate ISM literature pub-
lished to date, providing a critical review of the state of the art in modeling and optimization
of ISM resource allocation problems, and identifying future research directions.

The remainder of this paper is organized as follows: Sect. 2 discusses the review method-
ology and contributions. In Sect. 3, a framework to characterize biological invasions and their
management is outlined, and an overview of the invasion impacts on ecosystems and their
services is presented. In Sect. 4, we present an optimization model for controlling invasive
species to highlight the biological and economic components of ISM as a spatio-temporal
resource allocation problem. Section 5 deals with the classification and analysis of selected
literature regarding ISMwith respect to biological, economic, model, andmathematical com-
plexity, and analyzes studies with respect to their focus, application areas, and main results.
In Sect. 5, we also discuss various OR modeling and solution approaches in the ISM litera-
ture. Finally, Sect. 6 presents some concluding remarks and suggestions for future research
directions.

2 Review methodology and contribution

This section presents the procedures that we followed in our systematic literature review and
paper contributions. In this review, we focus on the mathematical modeling-based literature
that addresses the “invasive species management” problem. Thus, we limit our selection to
articles that describe applications of mathematical optimization models and methodologies
to invasive species management and resource allocation.

2.1 Review methodology

In this paper, we perform a systematic literature review similar to the reviewmethods outlined
by Tranfield et al. (2003), Denyer and Tranfield (2009), and Pullin and Stewart (2006). A
systematic literature review overcomes the perceived weaknesses of a narrative review by
providing a scientific and transparent process of the reviewers’ decisions, procedures, and
conclusions with the aim of reducing bias and improving repeatability (Tranfield et al. 2003;
Pullin and Stewart 2006). We adopt the evidence-informed literature review methodology,
which is based on a five-step approach: question formulation, electronic literature search,
study selection and evaluation, classification of studies and synthesis, and reporting results
and outcomes of review (Denyer and Tranfield 2009; Wong et al. 2015). Figure 1 provides a
summary of the procedures for our systematic literature review.
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Fig. 1 Steps of systematic literature review (adapted from Denyer and Tranfield 2009 and Wong et al. 2015)
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Primary review question The primary review question is: “To what extent have applica-
tions of optimization models and methodologies addressed invasive species management
and resource allocation?” Answers to this question enable the identification of the scope and
contents of the current state-of-the art, the key limitations of existing research as well as
future research directions in ISM.

Electronic literature search In the next step we located the relevant literature by identi-
fying a search database and search keywords. Because ISM is multidisciplinary in nature,
the related papers are scattered across various journals. Electronic journal databases, includ-
ing Google Scholar, Science Direct, JSTOR, Proquest, EBSCO-Host, Emerald, ISI web
of science, Scopus-Elsevier, Springer Link, and Wiley, were searched for applications
of optimization models and methodologies to invasive species management using key-
words including “invasive species management,” “invasive species,” “prevention,” “search,”
“surveillance,” “control,” “optimization,” “objective function,” “constraints,” “decision vari-
ables,” and “mathematical modeling.”

Study selection and evaluation The search process resulted in more than 8000 references,
including refereed journal articles, conference proceedings, dissertations, unpublishedworks,
and books, which we systematically screened for inclusion in the review (Pullin and Stewart
2006; Ho et al. 2015). Based on the database and keyword search, most papers were excluded
based on their titles because they were irrelevant to our study. Thus, by filtering the papers
using their titles, we identified 186 potentially relevant articles.

Inclusion criteria: We reviewed the abstract and full text of those 186 articles to determine
studies to be included in the analysis, classification, and synthesis using five inclusion criteria
(a) papers should be written in the English language; (b) they must include decision variables
modeling population dynamics as we focus our attention to mathematical models that explic-
itly incorporate some aspects of biological realism; (c) they must include decision variables
modeling control and/or surveillance and/or prevention; (d) they clearly define constraints
and an objective function in a mathematical model; and (e) they focus on invasive terrestrial
or aquatic plants or animals, or a hypothetical invader.

Exclusion criteria: Articles were excluded if they did not meet one or more of the inclusion
criteria. We restricted our search to papers published from year 1993 until March 2017. To
further limit the number of publications, we excluded any paper without a mathematical
model. Papers with a highly ecological rather than mathematical optimization perspective
(e.g., field experiments, empirical studies, statistical, and simulation modeling papers, etc.)
were also excluded because our review question concentrates on mathematical optimization
studies in invasive species management. We assessed the full text of all publications with
relevant titles and abstracts.We excluded duplicate records, i.e., multiple papers that describe
the same type of model. We also excluded papers describing mathematical optimization of
epidemic pathogens because the review of the literature on epidemic diseases would be
another study in itself.

Two co-authors and two peer reviewers contributed to the paper selection process so that
no important article from the total of 186 articles was missed. Because these researchers have
experience researching and publishing papers in the area, they suggested additional papers
that were not formerly included in the literature search.

The abstracts and full texts of a total of 186 articles were carefully reviewed for relevance
and contribution to the selected domains covered by this review. After reading those articles,

123



362 Ann Oper Res (2018) 271:357–403

eliminating non-optimization papers, and performing content analysis for answering the
review question, the total number of articles was reduced to 60. Thus, of all screened papers,
we selected and summarized 60 articles for classification, detailed analysis, and synthesis.
The quality assessment of studies was performed based on the rigor of the mathematical
model and optimization method applied in the study. While classification was restricted to
60 articles, a total of 180 related papers were cited in this review to describe the components
of an ISM framework and to contribute to the synthesis and discussion.

Categorization and reporting results The 60 selected papers were categorized with respect
to their contributions in theory and application, similar to the study of Dubey et al. (2017).
From a theoretical perspective, we classified ISM papers based on their biological andmathe-
matical complexity aswell asmodeling and solutionmethods [e.g., optimal control, stochastic
dynamic programming (SDP), linear programming (LP)]. From an application perspective,
papers were classified based on the stage of management (e.g., prevention, search, control),
specific application they consider (e.g., plant, pest, aquatic), and species name and loca-
tion (e.g., buffelgrass, Arizona). We also classified papers based on their focus, objectives,
and specific conclusions. Paper categorizations were presented in tables and figures to aid
understanding. We also provided a detailed discussion from content analysis and synthesis
of the selected papers. Finally, we discussed limitations of the existing research and provided
several directions for further research in optimizing ISM planning and resource allocation.

2.2 Paper contributions

Several earlier literature reviews have been conducted on various aspects of modeling inva-
sive species management. Olson (2006) reviews the literature on the economics of invasive
species management with applications to terrestrial invasive species, in particular. Hastings
et al. (2005) review and synthesize studies on the spread of invasive species, by focusing on
empirical and statistical approaches as well as data collection. Epanchin-Niell and Hastings
(2010) review studies that address the economics of optimal control of established invasive
species from the perspective of invasion dynamics, cost of control efforts, and a monetary
measure of invasion damages. Dana et al. (2014) review decision tools available for man-
aging biological invasions, and classify studies with respect to geographical focus, habitats,
and taxonomic groups. Billionnet (2013) reviewsmathematical optimization studies in biodi-
versity conservation and briefly discusses developments in optimization for fighting against
invasive species.

To our knowledge, no review comprehensively analyzes and classifiesmathematicalmeth-
ods in ISM from an OR perspective. Our review also differs in purpose, because we seek to
assess the models with respect to their computational complexity and the solution method-
ologies to tackle the ISM problem. To conclude, a comprehensive survey of mathematical
models on invasive species management is necessary and useful to guide practitioners
and researchers engaged in biological conservation, environmental management, forestry,
resource economics, as well as OR. Further, policy makers involved in ISM will benefit
from this comprehensive review because OR models of ISM are the foundation of decision
support.

The contributions of this paper are summarized as follows:

• To provide a review of the relevant literature while considering several important
dimensions not systematically reviewed before, such as the bio-economicmodeling char-
acteristics, problem complexity, type of application, spatio-temporal size of the instances
studied, and methods used to solve these models.
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• To define key concepts in ISM in a framework that characterizes biological invasions,
associated economic and environmental costs, and their management; and present a
comprehensive optimization model to highlight all these dimensions of ISM.

• To summarize the selected articles with respect to their focus, management objective,
and main results.

• To investigate to what extent applications of optimization models and methodologies
have addressed invasive species management and resource allocation.

• To describe the key imitations of existing research and challenges of mathematical mod-
eling, and to discuss the gap between theoretical research and practical application.

• To propose opportunities for the OR community to make significant future contributions
toward solving ISM problems.

3 A framework to characterize biological invasions and their management

Research to improve our understanding of human-mediated plant and animal invasions has
grown exponentially over the last half century (Gurevitch et al. 2011), and biologists con-
cernedwith different taxa have adopted different frameworks to describe the invasion process.
Most plant ecologists adopt a framework that views invasions as a series of barriers that
species must overcome in order to establish and spread (Richardson et al. 2000). Most ani-
mal ecologists adopt a framework that views invasions as a series of stages that species must
pass through on the pathway from native to invasive alien (Williamson 1996; Holmes et al.
2014). Blackburn et al. (2011) merge the plant and animal frameworks into a single unified
framework designed to apply to all human-mediated invasions, and we use this framework
to synthesize applications of OR in invasive species management.

The unified framework, which we simplify for our purpose, recognizes that the invasion
process can be divided into a series of stages, and in each stage, barriers need to be overcome
for populations to move to the next stage (Fig. 2).

The process begins with the Introduction (sometimes called arrival) stage in which indi-
viduals of a species are transported across a geographical barrier beyond the limits of their
native range and arrive at a new place. For example, in the horticultural trade, live plants are
grown in Central America and imported to the United States, and those imports may be vec-
tors for non-native insects and diseases to the U.S. During the Introduction stage, non-native
individuals may be intentionally placed in captivity or cultivation or they may be accidentally
introduced into a new environment (arrow A). During the Establishment stage, introduced
individuals must overcome barriers of survival (arrow B) and reproduction (arrow C). Failure
to survive or reproduce can result from factors associated with the species (e.g., reproductive
rate or specialism), the location (e.g., presence of enemies or mutualists), stochastic features
of the individual introduction event (especially propagule pressure), or their interaction (e.g.,
species location, such as climate matching). While individuals in an introduced population
might be able to survive and reproduce in the exotic environment, the population can still
fail to establish because the long-term population growth rate is negative. During the Spread
stage, the population must overcome barriers to dispersal (Quick et al. 2017). If individuals
can disperse to locations away from the point of introduction (arrow D), then they must over-
come new environmental barriers to survive and reproduce. Thus, a spreading population
faces multiple establishment events under an increasing range of environmental conditions.
If successful (arrow E), then the population becomes fully invasive, with individuals dispers-
ing, surviving, and reproducing at multiple sites across a range of habitats. The framework
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Fig. 2 Framework to characterize biological invasions and their management (adapted from Blackburn et al.
2011)

recognizes that a non-native population can fail to become an invader because it fails to pass
any one of the barriers at any stage of the invasion process. Finally, it is important to note
that several populations of an alien species can be present at different locations at different
points on the framework. Therefore, reference to position on the invasion framework with
respect to any given species should be temporally and spatially explicit.

Management strategies are associated with stages of the invasion process and are intended
to strengthen the barriers that prevent a population from moving from one stage to the next
(Fig. 2). For example, prevention measures are associated with the Introduction stage and
may include phytosanitary treatments and border inspections, which form barriers to popula-
tion introduction. In this review, we extend the prevention measures to include containment
activities, which reinforce barriers to Reproduction and Dispersal of established popula-
tions. Surveillance and control (eradication) strategies are employed from the beginning of
the Establishment stage to the end of the Spread stage, or Environment barrier, in order to
find new populations of invaders. When they are discovered, newly established populations
may be eradicated or contained to prevent or slow their spread. During the Spread stage,
non-native populations readily occupy new sites. In this stage mitigation efforts, including
control activities such as insecticide or biocontrol treatments, take place in an attempt to slow
their spread and lessen their impacts.

While determining the optimal levels of prevention, surveillance, and control is a critical
problem, the majority of OR applications focus on control strategies because biological
invasions are often discovered when they are in the Spread stage, and control is needed
to minimize their harmful impacts. Identifying optimal control strategies for established
invasions is also important because optimal levels of prevention and surveillance investments
depend on potential costs and damages, should prevention and surveillance strategies fail,
and the invading population establishes and spreads. For example, if the expected costs and
damages of a potential biological invasion are very large, then large investments in actions
that prevent introduction, and find and eradicate established populations when they are small
may be justified. Bioeconomic models of invasive species management have three features
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to minimize the total costs of damage and control (Epanchin-Niell and Hastings 2010):
(1) invasion dynamics and the effects of control strategies on those dynamics, (2) damages
caused by the invasion, and (3) costs associated with control. Because of the importance of
determining optimal control strategies for established invasions, we review these three key
components in the next sections.

3.1 Invasion dynamics

While life forms and stages of development may differ widely among invasive plant and
animal populations, certain basic demographic processes are common to them all—birth,
migration, aging, and death (Begon et al. 2009). These processes can be combined into a
simple algebraic equation describing the change in population size:

Nt+1 = Nt + B − D + I − E, (1)

where Nt is the population size at time t , B is the number of new individuals born during
period t , D is the number of individuals that die during period t , and I and E are the numbers
of immigrants and emigrants, respectively, during the period. Individuals of all species pass
through a number of life stages during their life cycle. For example, plants pass from seeds to
seedlings to photosynthesizing adult plants. Further, seedsmay remain dormant in the ground
for many years before they germinate. To project plant population size, the demographer
needs to estimate fecundity (average number of seeds produced per adult), seed germination
rate (depending on the number of years of dormancy), seedling establishment rate, and adult
survival rate. Therefore, Eq. (1) is only the basis upon which more realistic descriptions of
population dynamics are built.

An invasion is initiated when humans introduce propagules of the invader to a novel envi-
ronment. The chance of establishment depends on propagule pressure, a composite measure
of the number of individuals introduced. Propagule pressure incorporates estimates of the
absolute number of individuals involved in any one release event and the number of discrete
release events. As the number of releases and/or number of individuals released increases,
propagule pressure and the likelihood of establishment also increases.

The introduction of propagules will lead to a self-sustaining population only if the popu-
lation is capable of growing, regardless of how often or howmany propagules are introduced.
The growth rate of the population depends on the fecundity and survival rates of individuals
in different life stages. When the number of offspring that survive and grow into reproductive
age classes repeatedly exceed the loss from those age classes due to mortality, the population
will grow (Begon et al. 2009). In most populations, the fecundity and survival of individuals
are adversely affected by intraspecific competition for mates and resources. Further, these
adverse effects increase as the number of competitors increases. Then, the birth and sur-
vival rates of the population are density dependent, and this density dependence regulates
population size. Intraspecific competition decreases the size of populations that are above a
particular level but allow an increase in the size of the population below that level (Begon
et al. 2009). This equilibrium level is called the carrying capacity of the population. In addi-
tion to intraspecific competition, birth and survival rates of a population are also affected by
the environment (Gurevitch et al. 2011), and fluctuations in environmental conditions will
cause fluctuations in population size away from the equilibrium carrying capacity.

For newly established populations of invasive species, there may be an inverse density
dependence—the Allee effect—in which fecundity of the population is positively affected
by increases in population size when population levels are very low (Taylor and Hastings
2005). This effect happens when mates have difficulty meeting and reproducing at low pop-
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ulation levels, which may cause lower or negative population growth rates. As population
size increases from these low levels, the fecundity rate increases thereby increasing popula-
tion growth. At some point, population size reaches a level where intraspecific competition
causes fecundity to drop, with associated negative effects on the population growth rate. Allee
effects are important for understanding invasion dynamics because invasive species are often
at low densities when introduced to an environment, and the effects on population growth
may influence the effectiveness of control strategies (Liebhold and Bascompte 2003).

Whether populations produce sufficient numbers of offspring—new propagules—capable
of dispersing to new areas will determine the potential for invasion spread. The theory of
invasion spread began many decades ago with the use of reaction–diffusion models to fit
dispersal data and forecast spread (Hastings et al. 2005). These models predict the population
density across the landscape as a function of the population growth rate and a diffusion
coefficient (rate of random movement across a homogeneous landscape). While this model
has intuitive appeal, empirical evidence for awide range of organisms has shown that dispersal
is not random and in particular includes the presence of long-distance dispersal events that
can greatly affect the rate of invasion spread. Further, because dispersal rates in many species
depend on life stage, models that lack stage structure will overestimate invasion spread.
Finally, Allee effects at the front of the invasion wave may also slow invasion spread. Perhaps
the most limiting assumption of reaction diffusion models is a homogeneous landscape. The
direction and distance of dispersing individuals as well as the survival and reproduction
of those individuals is affected by landscape structure, which is the spatial distribution of
resources affecting the stages of the invasion process (With 2002).

3.2 Invasion impacts on ecosystems and their services

Biological invasionsmay havewide ranging effects on the properties and processes of ecosys-
tems (Simberloff et al. 2013). Ecological impacts can occur at the population, community,
or ecosystem levels. A good example of an invasive species with a wide range of ecological
impacts is the emerald ash borer (EAB), a phloem-feeding insect native to Asia and discov-
ered in the U.S. in 2002 (Herms and McCullough 2014). Although the pathway and vector
responsible for the EAB invasion remain unknown, EAB was probably imported into North
America via crates, pallets, or dunnage made from infested ash in Asia. Since its discovery,
EAB has spread to 26 states and two Canadian provinces, and threatens to extirpate native
ash trees throughout North America. Given that ash is one of the most widely distributed
tree genera in North America, the ecological impacts of the EAB invasion are likely to be
experienced on a continental scale (Gandhi and Herms 2010a, b).

Biological invasionsmay also affect ecosystem services, which are the benefits that people
derive from ecosystems (Millennium Ecosystem Assessment 2005). For example, ash trees
on forest land may be harvested and sold as raw material for timber products. Ash trees in
urban areas provide aesthetic amenities for urban dwellers. When ash trees succumb to EAB,
the levels of these services (i.e., timber supply and aesthetic amenities) drop. Understanding
the relative values of increases or decreases in different services can help managers select the
management option that brings the greatest benefits to society. This requires the estimation
and use of economic benefit functions, which quantify in monetary terms the relationships
between changes in the provision of ecosystem services and changes in human well-being
(Polasky and Segerson 2009; Champ et al. 2012).
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3.3 Management activities and objectives

Prevention, surveillance, and control strategies may involve a wide variety of activities and
associated costs. Prevention activities curtail immigration into a new location or limit the
emigration from existing populations. Propagules of invasive species are often transported
as hitchhikers on imported goods and prevention approaches may take place during any part
of the commodity supply chain between offshore production and import. For example, in the
horticulture industry,many species of plants are grown in offshore nurseries and then imported
to the U.S., with the risk of transporting non-native insects and diseases. Pre-entry programs
are a set of best management practices that offshore producers can implement to assure
the production of high-quality goods that meet phytosanitary standards. Prior to or during
transport, commodities may be treated with heat, cold, radiation, or pesticides to eradicate
unwanted organisms. Goods and vessels may be inspected during transport or upon arrival in
port to detect unwanted organisms. If unwanted organisms are found, shipments may require
treatment and post-entry quarantine involving containment with a simultaneous inspection
schedule. Prevention activities may also take place to limit the emigration of propagules from
an established population to a new location. These activities include quarantines and barriers
that limit spread. Surveillance activities take place in the importing country and involve
actions to detect newly established pest populations. These actions may involve insect or
animal traps, sentinel plots that are inspected for unwanted plants or pathogens, or visual
surveys using air or ground transport to detect damage. Control strategies include reducing
the size of the invasion by chemical, biological, mechanical, or manual control to slow or
stop the spread of the invasive species. These activities may involve direct control of the
pest itself or control of the host population. The costs of these activities vary and are usually
available from government agencies or private contractors.

An objective that explicitly minimizes the costs of damage and management or maxi-
mizes the benefit of management subject to a budget constraint can be used to determine
the economically optimal set of actions (Epanchin-Niell and Hastings 2010). For established
invaders, the objective is to minimize the sum of control costs and invasion damages over
time by choosing when, where, and how much to control. In many cases, the budget for
control is limited, and then the problem is to minimize the cost of damage, subject to the
budget constraint on the control activities. Optimal levels of prevention and surveillance
activities depend on the expected costs and damages of the optimal control strategy, should
prevention and surveillance strategies fail and the invading population establishes and spreads
(Lockwood et al. 2005).

4 An optimization modeling framework for invasive species management

Mathematical models provide powerful conceptual frameworks to understand and predict
biological invasion processes and design appropriate management strategies. Consequently,
these models are extensively studied in invasive species management (Taylor and Hastings
2004). In this section, we present the ISM as a resource allocation problem, and describe
the optimization model of Büyüktahtakın et al. (2015) to highlight various biological and
economic aspects of an invasive species control problem. In particular, this spatially explicit
optimization model includes biological growth dynamics (e.g., growth from seedbank, seed
dispersal, and population transition among life-history stages), density dependence, and car-
rying capacity.
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4.1 ISM: a spatio-temporal resource allocation problem

At its core, the invasive species management problem is a spatio-temporal resource allocation
problem. Specifically, ISM can be defined as the problem of determining how to allocate
limited resources for a set of management efforts (prevention, surveillance, and control) over
space and time in order to optimize an economic and/or ecological objective. Consider an
area consisting of I sites. Let xti be a binary decision variable, which takes the value of 1 if
a management action is applied on a site i ∈ [1, I ] in period t ∈ [1, T ], and 0, otherwise.
Define pti and c

t
i as the benefit (i.e., avoided damage) and cost of management action in site

i and time period t , respectively. Then the spatio-temporal resource allocation problem can
be formulated as

Max
{∑

i

∑
t
pti x

t
i

∣∣∣
∑

i
cti x

t
i ≤ Bt ,∀t

}
(2)

where Bt is the total resource budget at time period t . The objective function defines maxi-
mizing the value of investments over space and time. For example, in ISM, a decision-maker
might wish to maximize the benefit of detection and eradication efforts within budget limi-
tations over a planning horizon.

The resource allocation problem has been widely studied in the field of OR. This problem
is equivalent to the classical knapsack problem (Nemhauser and Wolsey 1988a), which can
be defined as one of selecting from a set of potential investments to maximize the sum of
the benefits, subject to a budget constraint that cannot be exceeded. The knapsack problem
is NP-hard (Kellerer et al. 2004). A range of integer and linear programming methods are
available to solve problems of this form (Hillier and Lieberman 2012; Nemhauser andWolsey
1988b).

4.2 An optimization model for controlling invasive species

We present below a comprehensive bio-economic model by Büyüktahtakın et al. (2015) for
controlling invasive species to illustrate the main components of an OR model to help solve
other similar control problems. The formulation of theMINLPmodel is described as follows:
Let t ∈ [0, T ] be any year of the planning horizon, where T represents the final time period.
The considered spatial location is divided into square sites with I rows and J columns. Any
site of the location can be characterized by its coordinates (i, j), where i ∈ {1, 2, . . ., I } and
j ∈ {1, 2, . . .J }.�ij is the set of neighboring sites of site (i, j). Age clusters (age categories)
of the invasive species population are defined as k = 1, 2, 3, . . ., n+, where k represents the
age of each cluster, and n+ defines the age cluster n and older populations of the invader
considered.

Other notation used in the model of Büyüktahtakın et al. (2015) is given below:

• Ek
ijt: The expected damage of the invader at site (i, j) at time t .

• Pk
ijt: The after-treatment population of the invader of age cluster k at site (i, j) at time t .

• Dijt: The number of seeds dispersed from surrounding sites (h, q) ∈ �ij to site (i, j).
• λ: The percentage of seeds that disperse from surrounding sites (h, q) ∈ �ij to site (i, j).
• τ θ

(h,q): The probability of seed dispersal from surrounding sites (h, q) ∈ �ij to site (i, j)
with direction θ .

• Sk : The number of seeds produced by each stem of the plant in age cluster k.
• Rijt: The number of seeds remaining in site (i, j) after dispersal to surrounding sites.
• ω: The percentage of seeds that remain after dispersal.
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• Bijt: The seed bank population in site (i, j) at time t , where Bij0 represents the initial
seed bank

• γ : The longevity rate, i.e., survival rate of seeds in the seed bank.
• α: The germination rate of the seeds into a seedling.
• Kij: Carrying capacity, which represents the maximum population that can be supported

by site (i, j).
• P̃k

ijt: The transition population of the invader in age cluster k without considering carrying
capacity.

• ρ: The success rate of a seedling becoming a 1-year-old plant.
• ψk : The loss rate of individuals while transitioning from age cluster k to k + 1.
• P̂k

ijt: The before-treatment population of invaders with considering carrying capacity.
• φ: The effectiveness rate of the control treatment (e.g., herbicide treatment).
• yijt: The binary variable, which is 1 if site (i, j) is treated in period t , and 0 otherwise.
• Cij: Cost of treatment (e.g., labor and herbicide cost) per site (i, j).
• �: The available budget for the entire time horizon.

The MINLP model by Büyüktahtakın et al. (2015) is then formulated as follows:

Minimize Z =
I∑

i=1

J∑
j=1

T∑
t=1

n+∑
k=1

Ek
ijt P

k
i j t (3)

subject to:

Dijt =
n+∑
k=1

∑

(h,q)∈�ij

λτθ
(h,q)P

k
hqt S

k ∀i, j, t (4)

Rijt =
n+∑
k=1

ωPk
ijtS

k ∀i, j, t (5)

Bijt = Bij0(γ − α)t +
t∑

s=0

(
(γ − α)t−s(Dijs + Rijs)

) ∀i, j, t (6)

P̃k
ij,t+1 = αρBijt k = 1; ∀i, j, t (7)

P̃k
ij,t+1 = Pk−1

ijt (1 − ψk−1) k = 2, . . . , n − 1; ∀i, j, t (8)

P̃k
ij,t+1 = Pk−1

ijt (1 − ψk−1) + Pk
ijt(1 − ψk) k = n+; ∀i, j, t (9)

P̂k
ijt = min

⎧⎨
⎩

⎛
⎝Kij −

n+∑
v=k+1

P̂v
ijt

⎞
⎠ , P̃k

ijt

⎫⎬
⎭ k = 1, . . . , n − 1; ∀i, j, t (10)

Pk
ijt = P̂k

ijt(1 − φyijt) ∀i, j, k, t (11)

T∑
t=1

I∑
i=1

J∑
j=1

Cij yijt ≤ � (12)

In this optimization model, the objective (3) minimizes the total expected damage resulting
from the invasive species in all age clusters k, over all sites (i, j) and all time periods t . Equa-
tion (4) formulates seed dispersal to site (i, j) from surrounding sites (h, q) ∈ �ij. Equation
(5) represents the number of seeds remaining at site (i, j) after dispersal to surrounding sites.
Equation (6) represents the seed bank accumulation including the initial seed bank as well
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as all produced and dispersed seeds in site (i, j) from time zero until time t , while also con-
sidering the decay of seeds over time. According to Eq. (7), germinated seeds from the seed
bank become seedlings turning into 1-year-old plants with a given success rate. Equation (8)
implies that each individual moves up one age class in a 1-year period with a certain loss rate.
Equation (9) represents the total population with maximum age cluster including all plants
with age n+ and older until they die out. Equation (10) defines the carrying capacity con-
straints and gives the actual before-treatment population considering the maximum possible
space left from older individuals of the invader population. In particular, Eq. (10) implies that
the actual before-treatment population is assigned to the minimum of the remaining capacity
left after older individuals populate a site (i, j), and the transition population. Equation (11)
implies that the before-treatment population is reduced by φ percent if treatment is applied
in site (i, j) at time t . Note that both Eqs. (10) and (11) are non-linear, however they could
be linearized by conventional linearization methods (Büyüktahtakın 2017; Kibis and Büyük-
tahtakın 2017). Equation (12) limits the available treatment budget allocated for treatment
throughout the entire time horizon.

TheMINLPmodel proposed by Büyüktahtakın et al. (2015) is applied to control the infes-
tation of Sericea (Lespedeza cuneata), an invasive plant threatening the Great Plains of U.S.
However, their MINLP model provides a general framework for controlling invaders, and
thus could also be adopted to other invasive species such as fish, insects, animals, and plants
with age-specific vital rates. For example, equations representing age-structured growth (7)–
(10) can be modified to formulate the growth of stage- or size-structured species, while
seed dispersal and seed bank-based growth equations (4)–(6) can be adjusted to formu-
late various offspring generation and dispersal mechanisms. Furthermore, the age-specific
carrying-capacity constraints (10) can be adjusted to bound the population size of species
within its natural boundaries (Büyüktahtakın et al. 2015).

The intrinsic rate of growth, carrying capacity, form of invader’s growth function, dispersal
processes, and spatial representation are key factors to be considered in invasive species
management planning. Most modeling studies on the ISM problem differ from each other
according to how they model the interactions among these key factors. The growth of the
invader population may be modeled using a linear, exponential, or logistic function, while
also taking into account carrying capacity (the maximum population that can be carried
in a specific location). For example, Hof et al. (1997) assume an exponential population
growth, while a logistic growth is more realistic to represent the growth of many biological
species. Büyüktahtakın et al. (2011a) propose a non-linear integer programming model by
explicitly defining the logistic growth and carrying capacity of invasive species. Some studies
further focus on biological details such as seedbank and age-structured growth and survival
parameters as described in theMINLPmodel (3)–(12). In this MINLPmodel, Büyüktahtakın
et al. (2015) formulate the population growth using a linear function, which defines the
germination of seeds from the soil seed bank and dispersed seeds, as opposed to the use
of a logistic growth function. These authors also incorporate non-linear carrying capacity
limitations while giving priority to older-age clusters in the population in a spatially explicit
model. They find that the predicted growth follows a multi-logistic population growth with
multiple, sequential, and overlapping phases of logistic form (Meyer et al. 1999), rather than
a simple logistic growth form.

Existing ORmodels usually consider the cost of management actions and a limited budget
for treatment, while setting an objective that explicitly minimizes the cost due to invasion
damages over time by determining when, where, and how much to control (Epanchin-Niell
and Wilen 2012; Hof and Bevers 2000, 2002; Kaiser and Burnett 2010; Büyüktahtakın
et al. 2011a; Horie et al. 2013). The cost of damages may include economic as well as
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environmental harmdue to invaders. On the other hand, some studies focus onmaximizing the
social welfare and benefits from protected forestry services and products. Multiple objectives
of the involved stakeholders have also been considered (see e.g., Büyüktahtakın et al. 2014a),
while the analysis of such multi-objective optimization models (Kantas et al. 2015) has been
limited in the ISM literature.

5 Classification of optimization models in ISM

In this section, we classify mathematical models with respect to the type of management
action (prevention, surveillance, and control), biological complexity (e.g., growth, dispersal,
and stage structure), and model complexity (budget constraints, spatial and temporal dimen-
sions, and uncertainty), as shown later on in Table A. We also classify models with respect
to their objectives and focus, the application considered, and main results, as shown later on
in Table B.

5.1 Model classification based on stage of management

Figure 3 classifies the literature for ISM modeling with various types of complexities, and
report the number of papers under each category and the corresponding percentage. The
majority (86.7%) of reviewed mathematical modeling and optimization studies of ISM con-
sider control programs either alone or in combination with prevention and surveillance
activities (Fig. 3). Out of 60modeling analyses, nine (15.0%) focus on prevention and control
activities, ten (16.7%) focus on surveillance and control activities, and six (10.0%) focus on
integrating prevention, surveillance, and control activities. Models that address prevention
activities alone or in combination with other measures comprise 33.3% of the analyses, while
models addressing surveillance cover 36.7% of the studies.

5.1.1 Control models

The majority of studies on invasive species management have concentrated on control strate-
gies for established populations (Fig. 3a and Table A). Control strategies include reducing
the size or slowing the spread of the invasion by chemical, biological, mechanical, or man-
ual control, or other means (Olson 2006). By incorporating the effectiveness of the control
method(s) selected, mathematical models [e.g., the MINLP model (3)–(12)] formulate con-
trol as a reduction in the size or rate of spread of the invading population. The optimization
problem for control models is generally formulated to determine the optimal allocation of
resources among control activities in order to minimize invasion damage over time while
also satisfying a control budget and respecting biological dynamics of the invader (Table
B). The resulting dynamic optimization problem can be addressed using various tools such
as dynamic programming (DP), mathematical programming, and optimal control, see e.g.,
Billionnet (2013), Kibis and Büyüktahtakın (2017), and (Olson 2006).

5.1.2 Prevention models

Preventing the introduction and establishment of individuals of an invasive species is an
important means of avoiding potential damages. Optimization studies of prevention address
the efficient use of resources to curtail immigration into a new location or limit the emigration
from existing populations. Propagules of invasive species are often transported as hitchhikers

123



372 Ann Oper Res (2018) 271:357–403

33.3 36.7

86.7

15.0 16.7
10.0

0

10

20

30

40

50

60

N
um

be
r o

f P
ap

er
s

68.3

10.0

40.0

53.3

31.7

20.0

0
5

10
15
20
25
30
35
40
45

N
um

be
r o

f P
ap

er
s

40.0 43.3

95.0

58.3

0
10
20
30
40
50
60

N
um

be
r o

f P
ap

er
s

28.3

55.0

6.7 6.7

0
5

10
15
20
25
30
35

N
um

be
r o

f P
ap

er
s

(a) (b)

(d)(c)

Fig. 3 Literature classification for ISM modeling in terms of the following: a stage of management, b
biological complexity, c modeling complexity, and d mathematical complexity. Note that some studies are
listed under multiple categories in each figure; therefore, the percentages do not total 100%

on imported goods, and the interception of infested material through border inspections is the
primary means of curtailing immigration. Optimization models have focused on allocating
an inspection budget among incoming shipments to minimize the introduction of infested
shipments or infested units of an imported commodity into a novel environment (Chen et al.
2017; Surkov et al. 2009; Yamamura et al. 2016). These studies highlight the fact that optimal
inspection policies focus more resources on the higher-risk commodities or pathways of
introduction. Some recent mathematical models allocate resources to inspection and control
activities during the introduction and establishment stages (e.g., Sanchirico et al. 2010),
while other models design quarantine-restricted trade policies to prevent new introductions
(e.g., Cook 2008). Optimization models have also accounted for the value of information
from inspections to improve targeting of inspection resources over time in order to minimize
accepted infested shipments (e.g., Springborn 2014). The problem of preventing biological
invasions caused by ships transporting internationally traded goods between countries and
continents is also studied from a long run perspective using queuing theory (Batabyal and
Beladi 2006).

Prevention strategies also include quarantines and barriers that prevent the emigration of
propagules from an established invasive population to new locations. Optimization studies
analyze the efficient use of resources to establish barrier zones at the edge of the invasion
front (Epanchin-Niell and Wilen 2012; Sharov and Liebhold 1998), contain or quarantine
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established populations (Moore et al. 2010; Pichancourt et al. 2012), and make sanitation
cuts by preemptively removing the host population (Hof et al. 1997; Kovacs et al. 2014).
One common goal in these models is to avoid damages and/or limit the costs of eliminating
invasive species (Table B).

Several papers have studied prevention strategies jointly with control, and analyzed the
related trade-offs for resource allocation (Burnett et al. 2008; Epanchin-Niell and Wilen
2012; Finnoff et al. 2007; Hof et al. 1997; Kovacs et al. 2014; Leung et al. 2002; Moore
et al. 2011; Olson and Roy 2005; Pichancourt et al. 2012; Potapov 2009; Sharov and Lieb-
hold 1998). A common result is that strategies for prevention, control, and damage reduction
are complementary and the neglect of any of them may lead to unnecessarily large social
costs (Gren 2008). These papers commonly report that investing in prevention activities
is superior to investing in control strategies alone (Leung et al. 2002; Mehta et al. 2007).
Leung et al. (2002) claim that a much higher monetary value should be placed on pre-
vention than is currently done. Some researchers report that the allocation of resources
among prevention and control depends on the related costs and effectiveness of the strat-
egy (Kovacs et al. 2014; Potapov 2009). Potapov (2009) shows that the intensity of control
depends on the trade-off between losses caused by invasion and the cost of control pro-
cedures. Kovacs et al. (2014) find that net benefits can be boosted when decision-makers
cooperate in the allocation of resources among prevention and control actions. Olson and
Roy (2005) show that an increase in the variability of introductions increases the marginal
benefits from prevention and control for given levels of prevention and control. Sharov
and Liebhold (1998) report that quarantine regulations may not always be an efficient
means to reduce the rate of population spread, in particular when colonization rates are
low.

5.1.3 Surveillance models

In addition to preventing the introduction of invasive species, optimal intervention strategies
include surveillance to detect newly established populations. Both prevention and detection
involve monitoring activities. With a prevention strategy, the purpose of monitoring is to
prevent species from entering into an ecosystem. With a detection strategy, the purpose
of monitoring is to determine the location and size of a population that already exists in
the ecosystem. Detection strategies are commonly used with control in order to identify
new establishments and quickly implement control measures for a prompt containment of
invaders (Mehta et al. 2007; Homans and Horie 2011).

The costs of surveillance and control critically impact optimal intervention strategies.
Control costs may be lower and eradication may be possible if a colonizing population is
detected when it is small. However, the detection of a nascent population is often difficult,
and the associated costs may be quite high (Mehta et al. 2007). In the surveillance-and-
control problem, the manager seeks to identify the optimal search-and-treatment effort
while minimizing damage from invasive species as well as the total cost of surveillance
and control under a limited budget. These models provide a useful framework for deter-
mining the optimal timing and intensity of surveillance, assuming that treatment can be
conducted only after the infestation is found (Bogich et al. 2008; Homans and Horie
2011; Horie et al. 2013; Mehta et al. 2007; Mbah and Gilligan 2010; Yemshanov et al.
2017). Resources for surveillance can also be allocated to maximize the expected num-
ber of transmission pathways that are covered by survey locations (Yemshanov et al.
2015).
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5.1.4 Integrated prevention, surveillance, and control models

As noted above, control strategies focus on slowing the spread of an established population,
prevention strategies limit the introduction of propagules of an invasive species, and surveil-
lance increases the chance of early detection of newly established populations (Rejmánek
and Pitcairn 2002; Rout et al. 2011). The optimal allocation of limited resources among these
three different intervention activities is a critical research question in ISM. Greater spending
on prevention could reduce the introduction of new invaders, while greater surveillance helps
identify invasive subpopulations, which in return helps to control the spread of the species
across the landscape. However, budget allocated to one of the three intervention strategies
limits the budget allocated to the others. For example, while increasing surveillance may
enable earlier control, the higher spending on surveillance could hinder eradication due to
lack of funds. The relative costs and effectiveness of different interventions as well as their
interactions affect the optimal timing and intensity of intervention strategies (Epanchin-Niell
and Hastings 2010; Horie et al. 2013; Olson and Roy 2005). Fewer studies have examined
both the optimal resource allocation and the timing of prevention, eradication, and control
simultaneously, as opposed to studying these variables independently (Carrasco et al. 2010;
Hyytiäinen et al. 2013; Polasky 2010; Rout et al. 2014, 2011; Mbah and Gilligan 2010).

The optimal investment of resources on each management action is sensitive to the unit
costs and efficacy of different intervention measures, to the size of invader population after
detecting invaders, and to the difference in the estimated impact of a localized andwidespread
invasion (Hyytiäinen et al. 2013; Rout et al. 2014). Furthermore, it is found that imple-
mentation of mixed strategies, where prevention, surveillance, and control are employed
simultaneously, is usually better or more cost effective than implementing a single strategy
alone when the extent of the infestation is uncertain (Rout et al. 2014).

5.1.5 Bio-economic model complexity

Simple invasion models are used to make general inferences about how systems work and
offer analytical tractability by ignoring complex biological dynamics, environmental hetero-
geneity, or economic constraints. However, these models are often insufficient to realistically
represent the spatio-temporal invasion patterns. On the other hand, each biological and eco-
nomic factor considered adds a new level of complexity in mathematical models because
these factors are generally represented as restrictions, increasing the number of variables
and constraints in formulations. Thus, more detailed and complex models typically require
detailed data and additional computational resources (e.g., CPU time and memory) to solve
themodel (Green et al. 2005). The trade-off between the realismof themodel and its computa-
tional tractability makes the selection of the appropriate level of detail a challenge. Therefore,
an adequate level of biological and economic complexity needs to be considered in order
to forecast the dynamics of invasion processes and make the most appropriate management
decisions to control invaders accordingly. Next, we will discuss various intricacies, including
biological, spatial, and economical complexity as well as uncertainty investigated in previous
studies.

5.1.6 Biological complexity

Earlier research highlights the sensitivity of the optimal management effort to biological and
ecological factors such as intrinsic rate of population growth, carrying capacity, and the form
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of the invader’s growth function, which are specific to species and site (Eiswerth and Johnson
2002; Kibis and Büyüktahtakın 2017).

Figure 3b presents a classification of ISMmodeling in terms of the biological complexity.
As can be seen, the majority of studies consider population growth (68.3%) by explicitly
formulating the density of the species using growth functions, while others represent growth
as a proportion of the landscape invaded or as a state of the invasion using a transition
matrix representation (40.0%).Growthmodels can be categorized as density-independent and
density-dependent. Density-independent models do not consider environmental limitations,
such as the availability of essential resources (e.g., food and water), predation, disease, and
thus carrying capacity (maximum population that a site can hold) is unlimited (Tilman 2004;
Hairston et al. 1960; Menge and Sutherland 1987). These models typically assume a linear,
exponential, or geometric population growth (Blackwood et al. 2010; Buhle et al. 2005;
Finnoff et al. 2010; Taylor and Hastings 2004; Baxter et al. 2007).

Density-dependent models, such as theMINLPmodel (3)–(12), are more realistic because
population growth rates are regulated by the density of a population. Models with den-
sity dependency include logistic growth (Albers et al. 2010; Büyüktahtakın et al. 2011a;
Eiswerth and Johnson 2002; Leung et al. 2002), Gompertz function (Tjørve 2009), Allee
effects (Burnett et al. 2008; Carrasco et al. 2010), and propagule pressure (Carrasco et al.
2010). Density-dependent models inherently include carrying capacity.While themajority of
the studies formulate growth, less than half of them (31.7%) explicitly consider the carrying
capacity limitations in their growth models.

Allee effects and propagule pressure have received limited attention in ISM modeling.
One of the few exceptions is the work of Burnett et al. (2008), which assumes strong Allee
effects and utilizes a minimum population threshold before which an invasive population
of tree snakes cannot start growing in Hawaii. Carrasco et al. (2010) also incorporate Allee
effects in a comprehensive bioeconomic model, while considering the exclusion, detection,
and control of multiple invaders. They find that agencies should allocate less exclusion and
more control resources to non-native invasive species characterized by Allee effects, a low
generation rate of satellite colonies, and low propagule pressure.

Another implication of density dependence is the varying rates among the life stages of
an organism (Tanner 1999). In particular, stage-structured models track the dynamics of a
population partitioned into age, stage, size, and physiological classes; see, e.g., Getz and
Haight (1989), Büyüktahtakın et al. (2015). Incorporating stage structure is important for
cases in which vital rates such as growth, fecundity, and dispersal rates, and other critical
parameters are age-, stage-, physiologically, or size-dependent and vary significantly among
different life stages of a species (Caswell 2001; Cushing 1998; De Roos et al. 2003; Taylor
and Hastings 2004). For example, Eqs. (6)–(8) represent the population transition among
different stages (e.g., ages) of the species.

Taylor and Hastings (2004) consider a density-structured model in which a Spartina
alterniflora population is classified by both local density (high and low) and age (juveniles and
adults). Other ISMmodels are structured by age (Haight and Polasky 2010; Hyytiäinen et al.
2013; Leung et al. 2002; Büyüktahtakın et al. 2015), colony age (Sharov and Liebhold 1998;
Epanchin-Niell et al. 2012), physiological stage (Cacho et al. 2007), life stages (Pichancourt
et al. 2012), and individual size (Epanchin-Niell et al. 2014) of an invasive species.

The main advantage of a structured model is that it allows using different vital rates
for different classes (Taylor and Hastings 2004). Stage structures are typically represented
using matrices, which define transitions in the life cycle of organisms. These transitions and
stage-specific parameters can provide insights into management strategies regarding which
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stage should be given priority to target in order to maximize the management impact on the
population (Caplat et al. 2012; Ramula et al. 2008; Büyüktahtakın et al. 2015).

Few studies (10.0%) explicitly consider the seedbank or offsprings in their mathemati-
cal models. Most of them formulate state transitions from the seedbank stage to the adult
stage using matrix representations (Baxter et al. 2007; Cacho et al. 2007; Firn et al. 2008;
Pichancourt et al. 2012; Büyüktahtakın et al. 2015).

5.1.7 Spatial optimization and dispersal processes

Capturing spatial considerations in ISM is essential because a great part of an ecosystem’s
structure, function, andprocesses is spatial in nature (Berec2002;Durrett andLevin1994;Hof
and Bevers 1998). Such processes include offspring dispersal and establishment, movement
among regions, local competition, and impacts of spatial heterogeneity (e.g., soil fertility,
environmental, and other abiotic factors). In order to formulate heterogeneous growth and
spread over space, one needs to use spatial models. Figure 3c presents a classification of
ISM modeling in terms of the modeling complexity with respect to considering spatial and
temporal dimensions, economic constraints, and uncertainty.

A spatially explicit mathematical model represents a continuous or discrete heterogeneous
space in which the variables, inputs, or processes have explicit spatial locations (Scheller and
Mladenoff 2007). Here we summarize three common approaches used to incorporate the
space dimension into ISM models, similar to the approach of Gilligan and van den Bosch
(2008). These involve the spread of invasive populations over a landscape using the following
geometries:

• Regular-shaped gridded landscapes divided into rectangular, square, triangular, or hexag-
onal cells, which have been widely used in dynamic spatial modeling and the study of
ecosystems including invasive species (Billionnet 2013; Büyüktahtakın et al. 2011a;
Epanchin-Niell and Wilen 2012; Hof and Bevers 1998, 2002; Potapov and Lewis 2008;
Tyre et al. 1998; Aadland et al. 2015). For example, the MINLP model (3)–(12) repre-
sents a region, which is divided into equal-sized square grid cells, each representing a
site of the landscape considered. Grid representation is particularly used to model the
nearest neighborhood interactions, e.g., spread of offspring to adjacent neighbors, such
as in Eq. (4). In a more realistic representation, irregular polygons are used to represent
land parcels (Billionnet 2013). However, the rectangular grid with regular-shaped cells
is generally preferred in modeling due to its symmetrical, orthogonal coordinate system
and the typical use of rasters from Geographic Information Systems (Birch et al. 2007).

• Networks that represent short- and long-distance movement, e.g., spread of offspring and
migration of invasive individuals, and irregular long-distance movement through animal
and human movement.

• Diffusion processes, which represent large-scale dispersal across a landscape according
to a dispersal kernel.

Although considering the spatial dimension is critical in ISM modeling, less than half of
the reviewed papers focus on the representation of space in a mathematical optimization
model (Hof et al. 1997; Sharov and Liebhold 1998). This is because spatio-temporal char-
acteristics significantly increase the complexity of these models, making the solution often
computationally intractable (Holst et al. 2007; Pacala and Silander 1990). Integrating spa-
tial dimensions also requires the use of mathematical programming, for which closed-form
solutions are typically not available.
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Incorporating spread processes into management models is an essential factor for deter-
mining informed management strategies (Caplat et al. 2012). Despite this fact, dispersal of
invasive species has only been modeled in slightly more than half (53.3%) of the studies con-
sidered. Reaction–diffusion (Skellam 1951; Fisher 1937) and integro-difference (Neubert
and Caswell 2000; Kot and Schaffer 1986) models are commonly used approaches for defin-
ing the spread of invasive species in an optimization model. Reaction–diffusion models are
based on partial differential equations (PDEs) and neglect individual behavior, thus are more
suitable for cases that do not require much individual detail. Unlike reaction–diffusion PDEs,
which assume reproduction and dispersal occur simultaneously, integro-difference equations
break dispersal and population dynamics into separate stages, and define spread using a
dispersal kernel (Kibis and Büyüktahtakın 2014). Another common approach in ISM is to
model the spread of offspring to adjacent neighbors using a grid representation of adjacent
cells, while incorporating cell-to-cell dispersal probabilities that decline with distance and
are based on empirical observations; see e.g., Büyüktahtakın et al. (2011a), Hof and Bevers
(1998), Getz and Haight (1989). In addition to these methods, the gravity method (Potapov
and Lewis 2008), individual-based model (DeAngelis and Mooij 2005), and network model
(Chadès et al. 2011; Yakob et al. 2008) are used to formally integrate spatial heterogeneity
and spread into mathematical models. For example, Potapov and Lewis (2008) model disper-
sal between lakes using a gravity model, which employs the attractiveness of and distance to
a location for forecasting travel patterns. While individual-based models focus on tracking
the dispersal behavior of individuals or groups of similar individual organisms (Grimm and
Railsback 2013), network models represent the movement over a set of neighboring vertices
of a network graph through links connecting those vertices (Chadès et al. 2011).

5.1.8 Economic constraints and uncertainty

The budget allocated for any intervention strategy is usually limited in ISM. Budget con-
straints [see, e.g. Eq. (12)] are also shown to substantially impact the optimal management
strategy compared to unconstrained optimization (Taylor and Hastings 2004). However, only
40.0% of mathematical modeling studies explicitly consider the budget constraint in their
model. This may be due to complications that it causes, which make it difficult to obtain
closed-form solutions. Some of the models without budget constraints determine optimal
actions to minimize cost of management actions as well as loss due to invaders. In those
models, the budget is determined optimally in the objective, while not considering a prior
budget restriction. On the other hand, we observe that most studies (95.0%) consider the
temporal dimension of the problem, while spatially explicit models form only 43.3% of the
total.

Predicting and controlling biological invasions is a highly difficult problem because of
inherent uncertainties. Examples of those uncertainties include unpredictable weather condi-
tions and environmental disturbances, natural stochasticity (e.g., initial seed bank, changing
fecundity and mortality, random dispersal), varying management practices, and uncertainties
associated with estimating parameters of population growth and spread.

The uncertainty about the behavior of invasive pest populations is a fundamental challenge
for invasive species managers. Slightly more than half of the studies (58.3%) explicitly
consider uncertainty in one or more model parameters. For example, the following have
been modeled and the relative impacts studied: uncertainty in dispersal (Cacho et al. 2010;
Hyder et al. 2008; Kovacs et al. 2014; Kibis and Büyüktahtakın 2017), current extent of
the invasion (Moore et al. 2011; Rout et al. 2014), probability of introductions (Olson and
Roy 2005) and establishments (Carrasco et al. 2010), probability of infection or invasion
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(Hyytiäinen et al. 2013; Potapov 2009; Sebert-Cuvillier et al. 2008; Haight et al. 2011)
probability distributions of the degree of infestation (Haight and Polasky 2010; Horie et al.
2013), probability of species presence (Hauser and McCarthy 2009; Regan et al. 2006),
probability of disturbance (Firn et al. 2008), probability of connection among nodes of a
network (Yakob et al. 2008), probability of detection (Baxter and Possingham 2011; Bogich
et al. 2008; Cacho et al. 2007; Epanchin-Niell et al. 2014; Hauser and McCarthy 2009;
Horie et al. 2013; Mehta et al. 2007; Moore and McCarthy 2016; Polasky 2010; Regan
et al. 2006), state-transition probabilities (Bogich and Shea 2008; Epanchin-Niell et al. 2012;
Finnoff et al. 2007; Leung et al. 2002; Moore et al. 2010; Potapov 2009; Rout et al. 2014,
2011), probability of successful eradication (Green et al. 2005; Rout et al. 2014, 2011), and
probability of containment (Moore et al. 2011). While most ISM models that account for
uncertainty assume that decision makers are risk neutral, a few models assume that decision
makers are risk averse, which affects the optimal allocation of resources (Finnoff et al. 2007;
Springborn 2014). For example, assuming risk neutrality, Leung et al. (2002) show that
invasive species are managed more cost effectively when greater investments are allocated to
prevention activities relative to control. However, assuming risk aversion, Finnoff et al. (2007)
show that greater investments in control activities are preferredwhen the outcomes of controls
are more certain than prevention activities. Incorporating uncertainty further complicates the
mathematical model, necessitating the use of stochastic modeling and advanced solution
algorithms. We will discuss these modeling and solution techniques in detail in Sect. 5.

5.1.9 Spatial and temporal size

Table A also classifies models with respect to their spatial and temporal size. Most ISM
studies consider a multi-period problem, while 56.7% of them only consider one region,
i.e., are not spatially explicit. Depending on the complexity of the model and the selected
solution method, we observe that the considered spatial and temporal sizes largely vary
among different studies. For example, spatial size varies from four regions to 2000 × 2000
grid cells (4,000,000 regions), while temporal size changes from T = 4 periods to T = 200
periods. Each period is usually defined as a year in ISM models.

5.1.10 Mathematical complexity

Depending on the linear or non-linear nature of the objective function and the constraints in
an ISMmodel, we categorize the models as linear, non-linear, integer, and non-linear integer
(Fig. 3d). The majority (55.0%) of the models in ISM optimization are non-linear, while
28.3% of them are linear. Out of 60 modeling analyses, only four (6.7%) are linear-integer
models including discrete variables, while four (6.7%) are non-linear integer models. Section
5.3 presents various solution approaches to deal with linear, integer, and non-linear models.

5.2 Classification based on focus, objective, and application

Table B presents a classification of models with respect to their objectives and focus, the
application considered, and main results. As can be seen, the majority of studies focus on
invasive plants (21) followed by pest species (19), while seven of them focus on invasive
animal species, six of them study aquatic invaders, and seven of them consider a hypothetical
species. As shown in Table B, a typical study on ISM modeling and optimization focuses
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on a single invading terrestrial plant or pest species in Europe, North America, or Australia.
We also report on a few studies that were performed in New Zealand, South Africa, and the
Baltic Sea.

The ISM problem can be defined with an objective of minimizing the cost of damages
due to invaders over time with respect to a management budget (e.g., Büyüktahtakın et al.
2015; Eiswerth and Johnson 2002; Kibis and Büyüktahtakın 2017), while determining the
time, location, and intensity of control. Other objectives include minimizing the economic
damages caused by invasive species and the cost of management actions rather than using a
treatment budget (e.g., Homans and Horie 2011; Kaiser and Burnett 2010; Epanchin-Niell
et al. 2012; Olson and Roy 2005; Carrasco et al. 2010), minimizing economic and ecological
costs due to invaders (e.g., Bhat et al. 1993; Burnett et al. 2008), minimizing the total invasive
population (e.g., Bogich and Shea 2008; Hof and Bevers 2000), and minimizing the number
of newly infected populations (Horie et al. 2013). Other studies choose to maximize the
social welfare and net benefits from protected forestry services and products (e.g., Albers
et al. 2010; Aadland et al. 2015; Finnoff et al. 2010; Leung et al. 2002; Kovacs et al. 2014),
maximize the probability of detection or expected number of detections (e.g., Demon et al.
2011; Moore and McCarthy 2016), and maximize the number of healthy individuals (e.g.,
Baxter et al. 2007; Cacho et al. 2007; Firn et al. 2008; Büyüktahtakın et al. 2015; Mbah
and Gilligan 2010). Multiple objectives of the involved stakeholders, such as damage to
three impacted resources—saguaros, buildings, and vegetation—are also considered in the
optimization models (Büyüktahtakın et al. 2011b, 2013, 2014a).

The specific conclusions and policy recommendations made by the studies depend on the
focus of the study and assumptions made in the model. For example, the initial extent of
invasion, consideration of spatial factors, the studied species, and thus growth and dispersal
rates are all different. All proposed results could be valid, because one policy does not fit for
all situations due to the complexity of the problem.

One recommendation for the effective control of invasive species is the early removal of
infested populations (Blackwood et al. 2010) and increased trapping strategy in the initial
years of invasion (Bhat et al. 1993). Consecutive treatment is recommended for Buffelgrass
invasion in Arizona (Büyüktahtakın et al. 2011a), while another study suggests that every
2–3 year treatment may be effective for Sericea Lespedeza due to the reproductive maturity
(Büyüktahtakın et al. 2015). While some studies suggest that control should focus on highly
invaded areas (Finnoff et al. 2010), some studies recommend targeting new pockets for
treatment (Haight et al. 2011) and smaller size classes than adults (Pichancourt et al. 2012).
On the other hand, Taylor and Hastings (2004) suggest that optimal control strategy depends
on the available budget. The authors report that low-density areas should be targeted under
low budget, while the treatment should focus on high-density areas when the budget is high.
Yemshanov et al. (2017) suggest that it is optimal to spend approximately one-fifth of the
budget on surveys and the rest on tree removal, while focusing on the sites with the highest
probabilities of pest introduction.

Optimal treatment also depends on the area, density, and planning horizon (Hyder et al.
2008), while size of the initial introduction, spatial heterogeneity, and natural disturbances
could impact the invasion processes (Sebert-Cuvillier et al. 2008), and thus optimal treat-
ment. The success of eradication also depends on the detectability of the target plant, the
effectiveness of control, labor requirements for search and control, and the germination rate
of the plant (Cacho et al. 2007).

Büyüktahtakın et al. (2014a), Grimsrud et al. (2008), and Kovacs et al. (2014) are among
researchers who advocate coordinated efforts among stakeholders (e.g., managers, ecolo-
gists, government) involved in invasive species management to minimize harmful impact or
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maximize net benefits. The multi-objective approach of Büyüktahtakın et al. (2014a) high-
lights that the cooperation of different interest groups is absolutely necessary in establishing
acceptable treatment strategies; otherwise, the total damage due to the Buffelgrass invasion
in Arizona becomes very large. These coordinated efforts include the compensation of one
or more stakeholders for achieving an agreed optimal solution that leads to the most effective
use of shared resources. For example, using a cooperative game-theoretic model, Büyüktah-
takın et al. (2013) specifies that a homeowner strategy of protecting against wildfire risks due
to Buffelgrass invasion in Arizona affords less protection to other resources such as saguaros
and riparian vegetation that are also impacted by Buffelgrass invasion. A similar result holds
for protecting saguaros, which are also spatially concentrated. Under the optimal solution,
groups caring about riparian vegetation would compensate homeowners and groups caring
about saguaros because both of these groups’ gains are reduced by agreeing a cooperation
with the groups caring about riparian vegetation.

Optimal detection depends on the ease of detection, growth parameters, and initial pop-
ulation size (Mehta et al. 2007). Optimal surveillance effort depends non-monotonically on
population growth rate (Bogich et al. 2008; Epanchin-Niell et al. 2012). Optimal sample
densities are lowest for populations with very low growth rates (and long time horizons for
detection), because they remain small longer and are less expensive to eradicate. Optimal
surveillance effort is highest for infestations with moderate growth rates because their dam-
age and eradication costs grow quickly but they may not be easy to detect. Species with very
high growth rates warrant less surveillance effort because they are easier to detect. Baxter and
Possingham (2011) suggest focused searching if the invasion is not widespread, while Horie
et al. (2013) suggest focused searching on sites with a high expected number of infested
trees. According to Hauser and McCarthy (2009), surveillance should be prioritized in envi-
ronments where detection is easy, and a moderate investment is necessary to ensure a high
probability of detection.

Leung et al. (2002) suggest that amuch higher value should be placed on prevention, while
Burnett et al. (2008) suggest allocating more funds to detecting small-size populations rather
than prevention efforts. Sharov and Liebhold (1998) also claim that quarantine regulations
may not always be an efficient means to reduce the rate of population spread. According to
Moore et al. (2010), quarantine is optimal if the pest leads to huge costs in terms of damage
and treatment, while surveillance is optimal if it is more cost effective than quarantine.
Rout et al. (2014) report that it is optimal to combine surveillance efforts with quarantine
and control. Optimal management depends on the effectiveness of each action and different
stages of invasion. If the pest is absent, then it is more effective to prevent impacts through
prevention and surveillance (Rout et al. 2011). On the other hand, an intermediate level of
detection is optimal, according to the study of Mbah and Gilligan (2010).

5.3 Classification based on solution approaches

In this section, we discuss various modeling and solution approaches in ISM, including
optimal control, stochastic dynamic programming, the partially observable Markov decision
process (POMDP), simulation, numerical analysis, mathematical programming [linear pro-
gramming, mixed-integer programming (MIP), and mixed-integer non-linear programming
(MINLP)], heuristics, and other methods. Figure 4 shows the number and percentage of stud-
ies with respect to different mathematical modeling and the solution approaches. As can be
seen, the majority (19.8%) of the studies in ISM use optimal control, while 18.5% use SDP
and 2.6% use POMDP approaches. Simulation and numerical analysis forms 21.0% in total,
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Fig. 4 Classification of papers according to modeling and solution approaches, with related percentage
distribution on top of each bar

which is followed by heuristics (12.3%) and other methods (13.6%). We also observe that
MP modeling approaches (LP, MIP, and MINLP) form 12.3% in total.

Researchers use various approaches to solve mathematical problems in ISM, as described
below.

5.3.1 Optimal control and numerical analysis

A common approach to capture non-linearity in growth dynamics applies optimal control
to an ISM model. Optimal control models, similar to OR models, explicitly state the man-
agement objective, and alternative actions or controls (Baker and Bode 2013). In an optimal
control model, the growth and spread of the invasive species is typically represented by a
biologically determined transition equation, such as the growth from seedbank, seed disper-
sal, and population transition given in Eqs. (4)–(10), while the state of invasion is defined
by the size of the biomass or population of the invader, see e.g., Billionnet (2013), Hof and
Bevers (1998). Control action(s) involve(s) reducing the size of the invasion by chemical, bio-
logical, mechanical, manual, or other means, or prevention and surveillance measures. The
manager’s objective is to minimize expected discounted control costs and invasion damages
over time, subject to the biological transition function for the invasion (Olson 2006). One
common approach to solving this dynamic optimization problem is optimal control. Such
an approach has been applied to control and removal programs (Albers et al. 2010; Baker
and Bode 2013; Blackwood et al. 2010), surveillance programs (Hauser andMcCarthy 2009;
Homans and Horie 2011; Mehta et al. 2007; Grimsrud et al. 2008), and prevention programs
(Burnett et al. 2008; Kovacs et al. 2014; Olson and Roy 2005; Mbah and Gilligan 2010).

Nonlinearity in the system of equations hinders an analytic solution in an optimal con-
trol model. In order to facilitate a solution, numerical analysis methods have usually been
employed to present economic and biological insights in optimal control and other analytical
models (Bogich et al. 2008; Cacho et al. 2007; Epanchin-Niell et al. 2014; Moore et al. 2011;
Sharov and Liebhold 1998). In particular, researchers use ordinary differential equations
(Albers et al. 2010; Finnoff et al. 2010; Homans and Horie 2011; Grimsrud et al. 2008),
necessary and sufficient optimality conditions such as Pontryagin’s maximum principle and
the Hamilton–Jacobi–Bellman equation (Burnett et al. 2008; Hauser and McCarthy 2009;
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Kovacs et al. 2014; Mehta et al. 2007; Olson and Roy 2005), linear-quadratic control (Black-
wood et al. 2010), and numerical solution methods, such as the boundary value problem and
Hamiltonian (Burnett et al. 2008; Mbah and Gilligan 2010).

Optimal control software in MATLAB has been commonly used by researchers to tackle
optimal control models. The optimal control problem can also be represented in a discrete
form using the MINLP formulation (3)–(12) of Büyüktahtakın et al. (2015), which could be
directly solved by non-linear optimization software such as SNOPT, CONOPT, and BARON.
Kibis and Büyüktahtakın (2017) provide an equivalent linear formulation (MIP) for the
MINLP (3)–(12), which could be solved using commercial software such as CPLEX and
Gurobi.

5.3.2 Equilibrium and partial equilibrium analysis

Some of the earlier work has concentrated on the long-term state of the invasion rather
than the short-term invasion dynamics. Equilibrium analysis usually assumes a time horizon
sufficiently long for reaching equilibrium and minimizes some function of the equilib-
rium state of the invasion. A typical equilibrium analysis determines the minimum level
of control or surveillance such that the invasion is eradicated in the long-term (Epanchin-
Niell et al. 2012). That work defines the long-term epidemic equilibrium, either in terms
of determining the optimal long-term equilibrium surveillance effort (sample density that
minimizes the total expected costs of surveillance, eradication, and damages over time)
(Epanchin-Niell et al. 2012) and expected equilibrium number of populations in each size
class, or stock sizes (Eiswerth and Johnson 2002). Eiswerth and Johnson (2002) show that
in equilibrium, the benefits and costs of invasive species management must be equal at the
margin.

Partial equilibrium (PE) models have been used to compute the long run economic con-
sequences of non-native pests on an agricultural market, while assuming that other markets
remain unaffected by supply and demand shocks. In particular, PE analysis has been per-
formed to control the introductions of non-native harmful pests in agriculture via changing
import and trade policies and analyze the tradeoff between changes in trade policies and
damages caused by the invader’s introduction with a particular trade policy (Breukers et al.
2008; Cook 2008; Surkov et al. 2009). For example, Cook (2008) assess the likely regional
economic welfare implications of a new Australian biosecurity regulation that could also
increase the risks of potential pest invaders. On the other hand, Surkov et al. (2009) use
a PE analysis to determine the optimal inspection policy in the Netherlands given the
estimated costs of introduction of pests through trade pathways, while accounting for the
potential price effects due to the pest’s introduction. Breukers et al. (2008) analyze the
impacts of repeated brown rot outbreaks on supply and demand of seed potatoes using a PE
model.

5.3.3 Stochastic dynamic programming and Markov decision processes

Dynamic programming, a method first introduced by Bellman (1957) is a procedure for opti-
mizing multistage decision processes. DP effectively decomposes highly complex problems
into a series of sub-problems which are solved recursively (Büyüktahtakin 2011).

The growth transition equations can be considered as a Markov decision process (MDP).
Stochastic dynamic programming is a rigorous tool that can be used to solve MDPs in
order to find the optimal state-dependent decisions for a stochastic system (Bellman 1957;
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Kennedy 1981; Mangel and Clark 1988). SDP is used extensively in the optimization of
invasive species control (Finnoff et al. 2007; Leung et al. 2002; Moore et al. 2010; Rout
et al. 2011; Rabbinge and Rossing 1987; Yokomizo et al. 2009), surveillance (Baxter and
Possingham 2011; Pichancourt et al. 2012; Regan et al. 2006), and prevention (Finnoff
et al. 2007; Leung et al. 2002), and the combination of prevention, control, and surveillance
(Hyytiäinen et al. 2013; Moore et al. 2010; Polasky 2010; Rout et al. 2011). The majority
of studies incorporating uncertainty also use the SDP approach. SDP has been quite popular
and successful in ISM because the nonlinear and stochastic features that characterize a large
number of ecological systems can be translated into an SDP formulation.

One particular challenge of SDP is the uncertainty about the state of the system when
applying state-dependent decision models to ISM problems. The partially observable MDPs
can be applied to problemswhere the decision-maker does not know the state of the systembut
makes observations that are probabilistically linked to this underlying state (Littman 2009;
Monahan 1982). POMDPs have been successfully used in invasive species surveillance and
control (Haight and Polasky 2010) and prevention (Rout et al. 2014).

5.3.4 Simulation methods and numerical procedures

Simulation is a modeling technique that is used to imitate the behavior of a real-world system
using a computer program, representing all the characteristics of the systemby amathematical
or algebraic description (Ackoff 1961;Maass et al. 1962; Yeh 1985). Simulationmodels have
been successfully used in ISM to simulate the growth and spread of an invasive population
in a heterogeneous landscape and study the impacts of management actions (Baxter and
Possingham2011; Cacho et al. 2010; Carrasco et al. 2010;Haight et al. 2011; Sebert-Cuvillier
et al. 2008).

For example, by changing several parameters in the simulation, Sebert-Cuvillier et al.
(2008) examine various hypotheses regarding the role of a number ofmechanisms on invasion
dynamics, such as spatial heterogeneity, seed dispersers, site of first introduction, large-scale
natural disturbances, and forest management. Using simulation under different assumptions,
Baxter and Possingham (2011) compare the relative performances of SDP recommendations
and alternative management strategies. On the other hand, Yakob et al. (2008) utilize stochas-
tic network simulations to study population heterogeneity as a function of landscape structure
and invader behavior. Other simulationmodels evaluate alternative sampling designs (random
placements, grid arrays, transects, sectors and annuli arrangements) and a common kernel
(Skarpaas et al. 2005) as well as the spatial arrangement of sample points and the overall cost
of detecting and eradicating invasive populations (Berec et al. 2015).

Mathematical programming methods maximize or minimize an objective to find the opti-
mum decision for system operation while meeting all system constraints. On the other hand,
a simulation model provides the response of the system for certain inputs, i.e., it helps a
decision-maker to examine the consequence of various decision rules or scenarios of a sys-
tem. In particular, optimization considers all possible decision alternatives, while simulation
analyzes only a limited number of input decision alternatives. However, the advantage of
simulation relative to MP is that it is more flexible and adaptable in simulating the response
of the system.

Recently, an optimization scheme is incorporated into simulation in order to perform
certain degrees of optimization. For example, Carrasco et al. (2010) use genetic algorithms
combined with Monte Carlo simulation in a simulation-optimization routine in order to
minimize the net present value of total costs due to invasions and their exclusion, detection,
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and control. Using a network simulation approach combined with an MDP process, Chadès
et al. (2011) derive general rules for managing and surveying networks of pests, diseases,
and endangered species.

5.3.5 Mathematical programming (linear, integer, non-linear, and non-linear integer)
approaches

As discussed previously, simulation approaches have been widely used to represent and
provide insight into ecological functions. However, optimization approaches can offer a
powerful alternative to simulation becausemathematical optimization can evaluate very large
numbers of treatment alternatives and permit trade-off analyses that might otherwise be
impossible (Hof andBevers 2002). Another advantage ofmathematical programmingmodels
compared to simulation and statistical models is their flexibility for modification and their
generalizability to different types of applications.

Most optimization models are based on some type of mathematical programming tech-
nique such as linear programming, integer programming, non-linear programming, and
non-linear integer programming. An extensive literature review of MP approaches in ISM
reveals that no general MP model or algorithm exists for addressing ISM decision prob-
lems. The choice of MP depends on the characteristics and invasion dynamics of the invasive
species studied, biological and economic complexity handled, and specific objectives and
constraints.

Among the first MP studies in spatial ISM are the studies of Hof et al. (1997) and Hof
(1998) in which an LP model is developed in order to control the growth and dispersal of
an exotic pest on a gridded landscape structure. Different from the work of Hof (1998), Hof
et al. (1997) incorporate the carrying capacity limitation and propose an integer programming
formulation in order to control a forest pest. Hof and Bevers (2000) and Hof and Bevers
(2002) present various spatio-temporal optimization models, in particular LP approaches for
ecological systems management.

A logistic growth is more realistic than an exponential growth to represent the biological
growth dynamics of the species. Büyüktahtakın et al. (2011a) propose a non-linear integer
programming model by explicitly defining the logistic growth and carrying capacity of inva-
sive species. TheMINLP (3)–(12) model of (Büyüktahtakın et al. 2015) explicitly formulates
growth from the seedbank while taking into account age-structured carrying capacity. Due to
the complexity of the proposed MINLP, the authors use a rolling horizon approach to solve
the problem.

The computational complexity of MINLP models has remained the biggest challenge to
their implementation in computational software. Kibis and Büyüktahtakın (2017) address
this computational challenge by presenting an MIP model that provides an exact optimal
solution contrary to the earlier MINLP model proposed by Büyüktahtakın et al. (2015).
The authors first formulate an MINLP model that integrates integer treatment variables and
dispersal probabilities into a spatially explicit age-structured model, and then they linearize
the MINLP, which results in an equivalent MIP that can be more efficiently solved. Their
results show that the proposedMIPmodel outperforms the equivalent MINLP and non-linear
programming (NLP) [MINLP relaxation] models in terms of solution quality and potential
problem size that could be tackled.

Büyüktahtakın et al. (2014a) propose a multi-objective MINLP formulation to simulta-
neously optimize three objectives of minimizing damages corresponding to three different
threatened resources by Buffelgrass invasion in Arizona: saguaros (a native cactus species),
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buildings and vegetation. The authors use a multi-objective distance-based approach (Szi-
darovszky et al. 1986) to determine an overall optimal solution, which has the minimum
distance to the ideal solution that optimizes each single objective separately. The distance
measure is determined based on the assumption of the compensation between the objectives.
For example, while under full compensation Manhattan distance is used, under partial com-
pensation Euclidean distance is computed.When objectives are normalized, the total damage
values do not show much variability in comparing different distances.

Other MP approaches are proposed with different assumptions and focus on invasion
dynamics. For example, Epanchin-Niell and Wilen (2012) study a spatially explicit MIP
model, in which they consider the presence or absence of propagules (e.g., seeds or spores)
on a cell rather than the abundance of propagules per cell. Hastings et al. (2006) develop
simple approaches based on LP for determining the optimal control strategies of different
stage or age classes of invasive species that are still in a density-independent phase of growth.
Later, Horie et al. (2013) propose a scenario-based MIP model to optimally survey and treat
an invasion while approximating uncertainty about the extent of the infestation in each site
by a set of scenarios.

5.3.6 Heuristic methods

Many studies in the literature develop heuristic algorithms to solve ISM decision problems
because the optimal solution is typically computationally intractable. Heuristic methodolo-
gies do not guarantee an optimal solution as in exact solution approaches. However, they
can provide a close-enough solution for the specified objective function in a relatively short
amount of computational time, and their use can be easier for practitioners. In particular,
for large-size problems in ISM, heuristic methods and meta-heuristic algorithms such as the
genetic algorithm (Kaiser and Burnett 2010; Taylor and Hastings 2004), simulated annealing
(Demon et al. 2011), and neural networks (Potapov 2009) are utilized by researchers.

In order to handle the computational difficulty of mathematical programming models in
ISM, some researchers use a rolling horizon heuristic, where the nonlinear programming
model is solved for each period, and the resulting population after management actions are
employed is used as the next period’s initial condition (Büyüktahtakin et al. 2014b; Aadland
et al. 2015). While this method may lead to quick solutions, it may lead to suboptimality,
compared to solving the full dynamic model, which handles current and forecasted damages
at the same time.

Both heuristic and exact solution methods have their own advantages and disadvantages.
For instance, when facing a large-scale complex problem, heuristic and metaheuristic algo-
rithms can be used to find acceptable but non-optimal solutions. On the other hand, analytical
and exact methods usually guarantee optimality, while they are rarely applicable to real-sized
non-linear instances. In such cases, approximation or hybrid methods arise as an accept-
able way to solve complex problems practically (Govindan et al. 2015). Some examples of
the hybrid approaches used in ISM include 2–factor approximation (Moore and McCarthy
2016), first-order approximation, and neuro-dynamic programming (Potapov 2009). Nicol
and Chadès (2011) also develop a heuristic sampling method that approximates the optimal
policy for any starting state in order to deal with the large state space in an SDP.

5.3.7 Other approaches

Other successful approaches are not classified within any of the aforementioned methods.
Some of these approaches can be pointed out as game theoretical analysis using Nash equi-
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librium (Büyüktahtakın et al. 2011b), the Shapley value (Büyüktahtakın et al. 2013), neural
networks (Potapov 2009), Lagrangian relaxation (Mbah and Gilligan 2010), and statistical
approaches such as spatial sampling (Demon et al. 2011).

6 Concluding remarks and future directions

Invasive species are a major threat to our environment, society, and economy because they
threaten biodiversity, increase human health problems, reduce the value of agricultural prod-
ucts, and endanger life, property, and safety due to increased fire risks, while costing billions
of dollars each year for management efforts. The international community, including the
Global Invasive Species Program (GISP), formed by the United Nations, and other interna-
tional organizations, such as theNational Invasive SpeciesCouncil and theCenter for Invasive
Species Management (CISM), stress the importance of rapid control of invasive species in
order to minimize their adverse impacts. Given that the funding allocated to controlling
invaders is extremely limited, utilizing the available resources as effectively as possible is a
highly complex problem, requiring the use of OR as a decision-support tool. OR decision
tools can help managers assess alternatives, prioritize investment, and make better decisions
in the battle against invaders. In this paper, we have reviewed a range of ORmethods in inva-
sive species management and discussed their ability to address some of the major challenges
of biological invasions, their spatio-temporal management, mathematical complexity, and
solution of the models. We have also highlighted a plethora of challenges, gaps, and future
directions in the literature regarding invasive species control in this section.

Evidence from this study suggests that ISM modeling has mostly received the attention
of researchers in domain areas such as ecology, biology, environmental sustainability, and
resource economics. Although some logistical considerations have already been incorporated
into ISM approaches, the OR community could still provide useful input in ISM, in particular,
on the analysis of ISM logistics and coordination. Furthermore, the complexity of ORmodels
in ISM and the need for exact optimal solutions for large-scale instances would require
the contribution of mathematicians and OR researchers in developing advanced solution
algorithms to tackle such complex models.

This review also highlights the fact that OR could play an important role in invasive
species management and environmental decision-making, particularly in closing the gap
between the decision-support needs of managers and the decision-support tools currently
available for ISM. The successful development and use of OR methods as decision-support
tools will require the OR analyst to work closely with field researchers, conservationists,
as well as practitioners (see, e.g., Church et al. (2000)). Such interactions would facilitate
the development of data-driven models that could offer practical guidance to inform policy
decisions.

Following the insights derived from the analysis of a large variety of modeling studies
in ISM, we propose many opportunities for future research investigation. More specifically,
future research directions may include the following:

• More realistic assumptions Future research approaches should incorporate more real-
istic features regarding the population dynamics of invaders. For example, biological
factors such as growth and dispersal are critical parameters in invader control, and
therefore, future OR modeling approaches should take into account invasion dynamics
when considering logistical considerations. Rapid containment of biological invasions
is another critical factor, thus necessitating models that consider minimizing the control
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time. In addition, studying spatially, temporally, and structurally (aged or density based)
changing rates in the optimization models is important to improve the realism of those
models. There is also a gap between policy implementations and modeling approaches,
and therefore, researchers are encouraged to collaborate with practitioners while follow-
ing standards and guidelines published by environmental and governmental organizations
when developing ISMmathematical models. For example, in order to ensure compliance
with local, national, and regional regulations, additional constraints, such as monitoring
and quarantine requirements, could be integrated in ISM optimization models. Incorpo-
rating these considerations while taking into account more realistic assumptions would
lead to more robust models.

• Combined management strategies Relatively fewer studies have investigated the
resource allocation among joint intervention efforts such as prevention, surveillance,
and control in ISM. Most of the modeling approaches including multiple intervention
focus on SDP and MDP. Furthermore, the bioeconomic realism considered in those
models is limited. Future research could investigate biologically realistic models for the
optimal resource allocation among multiple management strategies. In particular, math-
ematical programming tools, such as MINLP and MIP, could prove useful in prioritizing
the management efforts of invasive species over multiple sites on a multi-period planning
horizon.

• Uncertainty The major uncertainties in ISM include, but are not limited to, the follow-
ing: (a) uncertainty in introductions and establishments, (b) dispersal and state transition
uncertainty, (c) uncertainty in current extent of the invasion and species presence, (d)
uncertainty in natural disturbances, and (e) uncertainty in available resources. In addi-
tion, due to environmental variation and human error, the effectiveness of management
strategies, such as detection, successful eradication, and containment, is uncertain.
Future OR models that embed stochastic parameters would provide more robust mod-
els for practical use in ISM (Cobuloglu and Büyüktahtakın 2017). The majority of OR
approaches in ISM use SDP techniques, while the use of other stochastic optimiza-
tion methods is limited. To this end, analytical methods such as stochastic programming,
robust optimization as well as chance-constrained and scenario-based optimization could
be used to handle mathematical optimization models with uncertain parameters, in addi-
tion to SDP, MDP, and simulation approaches.

• Logistic considerations Previous work on spatial ISM focuses on long-term strategic
decisions such as where and when treatment should be applied over multiple years, while
short-term operational decisions have not received sufficient attention from researchers.
Future research should analyze operational decisions, such as allocation of the treatment
crew, equipment, and other resources among different treatment sites, and the routing of
the crew between selected sites for management. Deployment of multiple resources such
as funding and labor among different treatment options (e.g., mechanical control, herbi-
cide treatment, prescribed burning) over multiple sites and time periods is also another
possible future direction. Scheduling of actions such as containment, surveillance, and
control as well as the allocation of tasks among personnel are other possibilities for future
investigation.
Another interesting future direction in ISM is the coordination of capacity (e.g., person-
nel and equipment) among stakeholders. In particular, cooperation among independent
but related parties to share their resources, capacities, and information could improve
the efficiency of ISM. OR models have been widely used for supply chain coordination
among stakeholders in production and manufacturing, disaster management, and bioter-
rorism response (Altay and Green III 2006; Lee et al. 2006; Thomas and Griffin 1996).
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Similar models could be utilized for ISM resourcesmanagement and coordination among
managers at the federal, state, and local level.
Transportation and trade also increase the risk of biological invasions. For example, many
wood-boring or bark-dwelling insects, such as emerald ash borer, are transported through
eggs or larvae inside wood and wood packaging. Pest movement in wood packaging is
further facilitated by faster transport and the use of shipping containers (Hulme 2009).
Future studies could incorporate the risks of invasion related to transportation in an opti-
mization model in which the routes, through which wood, feedstock, and propagules are
transferred, are optimally selected while minimizing the distances that potential invaders
are transported. Discrete and continuous network optimization models, such as shortest
path and minimum cost network flow problems (Ahuja et al. 1993), can be used to for-
mulate the transportation of goods that pose risk of invasion. Future research could also
optimize the design of the transportation network and the selection of appropriate means
for transportation and distribution activities while minimizing the risk of introduction
and establishment of new invaders.

• Model complexityThe computational complexity ofORmodels for ISMapplications has
remained the biggest challenge to implementing these models in computational software
and obtain optimal solutions. Difficulties with the ISM models include the formulation
of nonlinear biological intricacies, uncertainties in vital rates of the species, economic
restrictions, as well as the computational burden caused by the complexity of modeling
spatial heterogeneity and temporal dimensions in such a biological system (Kibis and
Büyüktahtakın 2017). Evenwithout considering the complicating biological factors, ISM
is a spatio-temporal resource allocation problem, which is shown to be NP-complete in
the strong sense (Kellerer et al. 2004). Most previous work studies the application of the
invasive species control problem to a real-life problemwithout focusing on the solvability
issues of the complex optimization problem.
Mathematical programming is a suitable tool to handle various model complexities
including spatial heterogeneity and uncertainty. For example, the mixed-integer pro-
gramming approach provides numerous advantages compared to specialized solution
algorithms including the simplicity of implementation of advanced MIP solver software,
reliability of the method, exact or guaranteed solution of the problem, and ease of mod-
ifying the model (Billionnet 2013).
Despite the availability of advanced optimization solvers such as CPLEX, the spatio-
temporal characteristics significantly increase the complexity of the MILP and nonlinear
MILPmodels,making the solution intractable. Future research should investigate decom-
position algorithms to tackle large-size MILPs in order to solve the full practical-size
ISC problem. Furthermore, cutting-plane methods exploiting the special structure of
the problem could be developed in order to improve the effectiveness of formulations
(Nemhauser and Wolsey 1988b).

• Data and parameterization One important gap in the literature is the integration of
OR models and large-scale empirical data. Models driven by field data are particularly
powerful for understanding the impact of biological characteristics as well as economic
realities in guiding management decisions. Such modeling efforts require the collabora-
tion of OR analysts with field biologists. For example, biologists could collect field data
in order to quantify germination, survivorship among age stages, and seed production.
The mathematical modeler then analyzes and parametrizes the collected large-scale data
using statistical methods. The parametrized data is then used as an input into a math-
ematical model. ISM modeling studies commonly assume homogenous data, in which
parameter values do not vary among different spatial locations or over different points
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of time. A model with spatially and temporally heterogeneous data would provide more
realistic recommendations compared to others using limited, homogenous or synthetic
data.
Uncertainties in environmental parameters are infrequently handled in the literature
(Beale and Lennon 2012; Rivington et al. 2006). However, data uncertainties affect out-
put from all models and therefore need to be incorporated in model predictions in order to
better informmanagement actions. One particular challenge is the collection of empirical
data and the quantification of uncertainty and spatiotemporal variation in vital rates such
as intrinsic growth rate, offspring production, carrying capacity, dispersal uncertainty,
and the likelihood of detection. The quantification of uncertainty requires the estimation
of probability distributions and the use of statistical methods, while uncertainty analysis
could be performed using Monte Carlo simulations, sampling methods, and regression
(Hammonds et al. 1994). While various sources of uncertainty have been previously
identified and incorporated into ISM mathematical models to some extent, future work
could measure and study all known sources of uncertainty comprehensively in one math-
ematical model (Beale and Lennon 2012). Furthermore, the effect of uncertainties on
modelled predictions could be investigated in a future study (Elith 2013).

• Validation of ORmodels in ISM To our knowledge, OR models in controlling invasive
species have not been validated yet. Therefore, future research should assess the appli-
cability of the existing ISM modeling frameworks to real settings. Validation of such
models could be achieved by face validation through evaluating expert opinion on the
inputs and outputs of the model, and validation based on field experiments in order to
confirm model predictions by field data (Gass 1983). Such evaluations could validate the
adaptability of existing models as well as the suitability of methodologies applied. Vali-
dation efforts could also provide useful insights and input for the refinement of existing
frameworks and development of more robust approaches.

• Economic assessment of the benefits of ISM One of the most important components
in the determination of optimal ISM strategies is an economic assessment of the benefits
(i.e., avoided damage) of management activities (see objective function, Eq. 3). Benefits
depend on the biological characteristics of the species (e.g., likelihood of establishment,
lags, and rates of spread) as well as the long-term damage if the invasion were to occur
(Epanchin-Niell and Liebhold 2015). The long-term damage reduction associated with
ISM strategies is difficult to quantify, especially at the regional or national scale (Aukema
et al. 2011).Methodological challenges include understanding andmodeling the complex
dynamics of invasion and damage processes (Kovacs et al. 2010; Soliman et al. 2012)
and estimating the value of damages to ecosystem services, such as water and air quality,
nutrient cycling, climate regulation, and recreation, that are not traded inmarkets.Aukema
et al. (2011) begin to address these issues with a study of the economic impacts of 455
non-native forest insect species known to be established in the continental United States.

• Coordination amongmultiple stakeholdersBiological invasions, by their nature, cross
jurisdictional boundaries as they spread, and control of the invasion often depends on
the choices of many decision-makers across the landscape. Each landowner typically
decides how intensively to manage an invader based on local damage and management
costs, without considering the benefits of control for neighbors and the general public.
As a result, a landowner acting independently is likely to underinvest in control from
a societal perspective. Economists have generally found that cooperative or centralized
control of a biological invasion across jurisdictions is superior to independent manage-
ment (Büyüktahtakın et al. 2013; Epanchin-Niell and Wilen 2015; Kovacs et al. 2014;
Aadland et al. 2015; Büyüktahtakın et al. 2011b). A mechanism of transfer payments in
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which one jurisdiction pays another to increase their level of control (Bhat and Huffaker
2007) is onemethod of cooperation. In other situations, jurisdictions may simply agree to
coordinate their efforts in a beneficial way to minimize spillover effects (Epanchin-Niell
and Wilen 2015). Cooperative game theory, such as the solution concept of Shapley, is
used to determine compensation efforts and optimal cooperation among multiple stake-
holders (Büyüktahtakın et al. 2013). The design of market-based and regulatory policies
to enhance cooperation across jurisdictions is a key area for further research.

• Need forholistic approach Invasive species programs cover awide range ofmanagement
options, all of which compete for public resources. The tradeoffs between program costs
and economic losses are often poorly understood, and this lackof informationmakes it dif-
ficult to design cost-effective programs. Efficient allocation of public resources requires
a framework that links prevention, surveillance, and control programs and their effects
on population dynamics and damages across a range of potential or current invaders.
Further, what is needed is an integrated framework that links human processes govern-
ing long-distance movement (e.g., trade); biological processes governing establishment,
local spread, and consequences for ecosystem services; and human processes governing
the value of those ecosystem services. Such a framework could then be used to evaluate
the benefits and costs of alternative allocation strategies and suggest optimal strategies.

Acknowledgements We gratefully acknowledge the support of the US Department of Agriculture, Forest
Service, Northern Research Station Joint Venture Agreement No. 16-JV-11242309-109 and the National
Science Foundation CAREER Award under Grant No. CBET-1554018. We thank Stephanie Snyder and
Denys Yemshanov for their invaluable suggestions and insights, which have improved the presentation and
clarity of this manuscript. The authors are also grateful for the comments of the editor and an anonymous
referee, whose remarks helped to improve the exposition of this paper.

Appendix

Here we provide Table A that summarizes a classification of studies with respect to various
types of complexities, size of application, and solution methodology, and Table B that clas-
sifies studies with respect to the objective of the study, application considered, and specific
conclusions.
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Table A Classification of studies with respect to various types of complexities, size of application, and
solution methodology
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Table A continued
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Table B Classification of studies with respect to objective, application, and specific conclusions
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Table B continued
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Büyüktahtakın, İ. E., Feng, Z., & Szidarovszky, F. (2014a). A multi-objective optimization approach for
invasive species control. Journal of the Operational Research Society, 65, 1625–1635. https://doi.org/
10.1057/jors.2013.104.

Büyüktahtakın, İ. E., Kibis, E., Cobuloglu, H. I., Houseman, G. R., & Lampe, J. T. (2015). An age-structured
bio-economic model of invasive species management: Insights and strategies for optimal control. Bio-
logical Invasions, 17, 2545–2563. https://doi.org/10.1007/s10530-015-0893-4.

Cacho, O. J., Hester, S., & Spring, D. (2007). Applying search theory to determine the feasibility of eradi-
cating an invasive population in natural environments. Australian Journal of Agricultural and Resource
Economics, 51(4), 425–443.

Cacho, O. J., Spring, D., Hester, S., &Mac Nally, R. (2010). Allocating surveillance effort in the management
of invasive species: A spatially-explicit model. Environmental Modelling & Software, 25(4), 444–454.

Caplat, P., Coutts, S., & Buckley, Y. M. (2012). Modeling population dynamics, landscape structure, and
management decisions for controlling the spread of invasive plants. Annals of the New York Academy of
Sciences, 1249(1), 72–83.

Carrasco, L. R., Mumford, J., MacLeod, A., Knight, J., & Baker, R. (2010). Comprehensive bioeconomic
modelling of multiple harmful non-indigenous species. Ecological Economics, 69(6), 1303–1312.

Caswell, H. (2001). Matrix population models. Wiley Online Library.
Chadès, I., Martin, T. G., Nicol, S., Burgman, M. A., Possingham, H. P., & Buckley, Y. M. (2011). General

rules for managing and surveying networks of pests, diseases, and endangered species. Proceedings of
the National Academy of Sciences, 108(20), 8323–8328.

Champ, P., Boyle, K., & Brown, T. (2012). Dordrecht, The Netherlands (Vol. 3). Berlin: Springer.
Chen, C., Epanchin-Niell, R., & Haight, R. G. (2017). Optimal inspection of imports to prevent invasive pest

introduction. Risk Analysis,. https://doi.org/10.1111/risa.12880.
Church, R. L., Murray, A. T., Figueroa, M. A., & Barber, K. H. (2000). Support system development for forest

ecosystem management. European Journal of Operational Research, 121(2), 247–258.
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